CHEMISTRY
 STANDARD LEVEL
 PAPER 1

Tuesday 7 November 2000 (afternoon)
45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
Periodic Table

$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number Atomic Mass													$\begin{gathered} 2 \\ \mathrm{He} \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \text { Be } \\ 9.01 \end{gathered}$											5 \mathbf{B} 10.81	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \mathbf{C l} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S c} \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \mathbf{A s} \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{array}{\|c\|} \hline 41 \\ \mathbf{N b} \\ 92.91 \end{array}$	$\begin{gathered} 42 \\ \mathbf{M o} \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \mathbf{T c} \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \text { Ru } \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \mathbf{S n} \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \mathbf{T e} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{array}{\|c} 55 \\ \text { Cs } \\ 132.91 \end{array}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.34 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{T a} \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \text { Re } \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{gathered} 79 \\ \text { Au } \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{array}{\|c} 81 \\ \text { Tl } \\ 204.37 \end{array}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (261) \end{gathered}$	$\begin{gathered} 105 \\ \text { Db } \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ (263) \end{gathered}$	$\begin{gathered} 107 \\ \mathbf{B h} \\ (262) \end{gathered}$	$\begin{aligned} & 108 \\ & \text { Hs } \end{aligned}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$									

$\begin{gathered} 58 \\ \mathbf{C e} \\ 140.12 \end{gathered}$	$\begin{gathered} 59 \\ \mathbf{P r} \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ 146.92 \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.35 \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \text { Tb } \\ 158.92 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \text { Tm } \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$

O～${ }_{\sim}^{\circ}$
Sio
人嗞奇皆
すき（大）
$\sigma \approx \stackrel{\text { ti }}{\underset{\sim}{\sim}}$
Q

1. The mass (in grams) of one molecule of water is
A. 3.0×10^{-23}
B. 1.8×10^{-22}
C. 3.0
D. 18.0
2. The formula for molybdenum(III) sulfate is
A. MoSO_{4}
B. $\mathrm{Mo}\left(\mathrm{SO}_{4}\right)_{3}$
C. $\mathrm{Mo}_{3}\left(\mathrm{SO}_{4}\right)_{2}$
D. $\mathrm{Mo}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
3.

$$
w \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+x \mathrm{O}_{2} \rightarrow y \mathrm{CO}_{2}+z \mathrm{H}_{2} \mathrm{O}
$$

When this equation is balanced correctly, the coefficient, x, for O_{2} is
A. 6
B. 9
C. $\frac{13}{2}$
D. 13
4.

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

Hydrogen and chlorine react according to the equation above. What will be the result of the reaction of 2.0 moles of H_{2} and 1.5 moles of Cl_{2} ?
A. $\quad 3.5 \mathrm{~mol}$ of HCl
B. 1.5 mol of HCl and 0.5 mol of H_{2}
C. 2.0 mol of HCl and 0.5 mol of Cl_{2}
D. $\quad 3.0 \mathrm{~mol}$ of HCl and 0.5 mol of H_{2}
5. $25.0 \mathrm{~cm}^{3}$ of sulfuric acid solution reacts with $36.2 \mathrm{~cm}^{3}$ of $0.225 \mathrm{moldm}^{-3}$ sodium hydroxide solution. The concentration of the acid is
A. $\frac{36.2 \times 0.225}{25.0}$
B. $\frac{2 \times 36.2 \times 0.225}{25.0}$
C. $\frac{36.2 \times 0.225}{2 \times 25.0}$
D. $\frac{25.0}{2 \times 36.2 \times 0.225}$
6. The correct number of protons and the electron configuration for chlorine is

number of protons electron configuration

A.
17
$2,8,7$
B.
17
$2,8,8$
C.
18
2, 8, 7
D.
18
$2,8,8$
7. The relative masses and charges of protons, neutrons and electrons are:
$\underline{\text { mass }}$ charge

proton	1	+1
neutron	1	0
electron	negligible	-1

Using these data, what are the values for the mass and charge of the helium nucleus? mass charge
A. $2+2$
B. 20
C. $4+2$
D. 40
8. When the elements below are arranged in order of increasing ionisation energy, what is the correct order?
A. $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$
B. $\mathrm{Na}, \mathrm{K}, \mathrm{Li}$
C. $\mathrm{Na}, \mathrm{Li}, \mathrm{K}$
D. $\mathrm{K}, \mathrm{Na}, \mathrm{Li}$
9. Equal numbers of moles of each of the following substances are added to $1 \mathrm{dm}^{3}$ of water. Which produces the solution with the lowest pH ?
A. $\mathrm{Na}_{2} \mathrm{O}$
B. MgO
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. SO_{2}
10. Most of the oxides of non-metallic elements are
A. ionic and basic.
B. ionic and acidic.
C. covalent and basic.
D. covalent and acidic.
11. What is the formula of a compound formed between element A (from Group 2) and element B (from Group 5)?
A. AB
B. AB_{2}
C. $\quad \mathrm{A}_{2} \mathrm{~B}_{5}$
D. $\mathrm{A}_{3} \mathrm{~B}_{2}$
12. As atomic number increases within a Group, the electronegativity of the elements
A. decreases because the atomic number increases.
B. decreases because the atomic size increases.
C. increases because the number of energy levels increases.
D. increases because the atomic number increases.
13. Which molecule has polar bonds but is nonpolar?
A. N_{2}
B. O_{3}
C. CO_{2}
D. NH_{3}
14. Which molecule has the largest bond angle?
A. BF_{3}
B. CF_{4}
C. NF_{3}
D. OF_{2}
15. The volume of a gas increases when its temperature is raised at constant pressure. This can be explained by an increase in which of the following?
I. Average speed of the molecules
II. Average size of the molecules
A. I only
B. II only
C. Both I and II
D. Neither I nor II
16.

$$
\begin{aligned}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) & \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \\
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

$$
\begin{aligned}
& \Delta H^{\ddot{\mathrm{O}}}=-393 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta H^{\mathrm{O}}=-588 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

According to the data above, what is the enthalpy change (in kJ) for the reaction:

$$
\mathrm{C}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})
$$

A. -87
B. -99
C. -173
D. -220
17.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \Delta H^{\ddot{\partial}}=-137 \mathrm{~kJ}
$$

Which statement about the information above is correct?
A. The total energy of the bonds broken in the reactants is greater than the total energy of the bonds formed in the product
B. The bonds broken and the bonds made are of the same strength
C. The total energy of the bonds broken in the reactants is less than the total energy of the bonds formed in the product
D. No conclusion can be made about the sums of the bond enthalpies in the product compared with the reactants
18. When $50 \mathrm{~cm}^{3}$ of $1 \mathrm{moldm}^{-3} \mathrm{HCl}$ is mixed with $50 \mathrm{~cm}^{3}$ of $1 \mathrm{moldm}^{-3} \mathrm{NaOH}$, the temperature of the resulting solution increases by $6^{\circ} \mathrm{C}$. What will be the temperature change when $100 \mathrm{~cm}^{3}$ of each of these solutions are mixed?
A. $\quad 3^{\circ} \mathrm{C}$
B. $6^{\circ} \mathrm{C}$
C. $12{ }^{\circ} \mathrm{C}$
D. $24^{\circ} \mathrm{C}$
19. As the temperature of a reaction between two gases is increased, the rate of the reaction increases. This is mainly because
A. the concentrations of the reactants increase.
B. the molecules collide more frequently.
C. the pressure exerted by the molecules increases.
D. the fraction of molecules with the energy needed to react increases.
20.

The curve above is obtained for the reaction of an excess of CaCO_{3} with hydrochloric acid. How and why does the rate of reaction change with time?

Rate of reaction
A. decreases the HCl becomes more dilute
B. decreases the pieces of CaCO_{3} become smaller
C. increases the temperature increases
D. increases the CO_{2} produced acts as a catalyst
21.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Methanol is made in industry by means of the reaction above. The equilibrium expression for this reaction is
A. $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{2\left[\mathrm{H}_{2}\right][\mathrm{CO}]}$
B. $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{H}_{2}\right]^{2}[\mathrm{CO}]}$
C. $\frac{2\left[\mathrm{H}_{2}\right][\mathrm{CO}]}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
D. $\frac{\left[\mathrm{H}_{2}\right]^{2}[\mathrm{CO}]}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
22.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H=-91.8 \mathrm{~kJ}
$$

The industrial synthesis of ammonia is based on the reaction above. Which factor(s) will increase the equilibrium concentration of ammonia?
I. Increase in pressure
II. Increase in temperature
A. I only
B. II only
C. Both I and II
D. Neither I nor II
23. When the pH of a solution changes from 2.0 to 4.0 , the hydrogen ion concentration
A. increases by a factor of 100 .
B. increases by a factor of 2 .
C. decreases by a factor of 2 .
D. decreases by a factor of 100 .
24. Which will be the same for separate $1 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of a strong acid and a weak acid?
I. Electrical conductivity
II. Concentration of H^{+}ions
A. I only
B. II only
C. Both I and II
D. Neither I nor II
25. The oxidation number of sulfur in the $\mathrm{HS}_{2} \mathrm{O}_{5}^{-}$ion is
A. -1
B. +3
C. +4
D. +5
26.

$$
\begin{aligned}
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) & \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \\
\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Co}(\mathrm{~s}) & \rightarrow \text { No reaction } \\
2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Co}(\mathrm{~s}) & \rightarrow \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s})
\end{aligned}
$$

Using the above information, the order of increasing activity of the metals is
A. $\mathrm{Ag}<\mathrm{Zn}<\mathrm{Co}$
B. $\mathrm{Co}<\mathrm{Ag}<\mathrm{Zn}$
C. $\mathrm{Co}<\mathrm{Zn}<\mathrm{Ag}$
D. $\mathrm{Ag}<\mathrm{Co}<\mathrm{Zn}$
27. How many different structural isomers have the formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$?
A. 2
B. 3
C. 4
D. 5
28. What will be formed when $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ reacts with Br_{2} in the dark?
A. $\mathrm{CH}_{2} \mathrm{Br}-\mathrm{CH}_{2} \mathrm{Br}$
B. $\mathrm{CH}_{3}-\mathrm{CHBr}_{2}$
C. $\mathrm{CH}_{2}=\mathrm{CHBr}+\mathrm{HBr}$
D. $\mathrm{CHBr}=\mathrm{CHBr}+\mathrm{H}_{2}$
29. Which compound can show optical activity?
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$
C. $\mathrm{HOCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$
30. When the compounds below are listed in order of decreasing boiling point (highest to lowest) what is the correct order?

1. ethane
2. fluoroethane
3. ethanol
4. ethanoic acid
A. $4,3,1,2$
B. $4,3,2,1$
C. $3,4,1,2$
D. $2,1,3,4$
