

CHEMISTRY STANDARD LEVEL PAPER 1

Tuesday 7 November 2000 (afternoon)

45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

				Period	lic Tab	le												
1 H 1.01				Atomic]	Number												2 He 4.00	
3 Li 6.94	4 Be 9.01			Atomic	: Mass							5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18	
11 Na 22.99	12 Mg 24.31		-									13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95	
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80	
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30	
55 Cs 132.91	56 Ba 137.34	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.21	77 Ir 192.22	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn (222)	
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs	109 Mt										
		- - -	58 Ce 140.12	59 Pr 140.91	60 N d 144.24	61 Pm 146.92	62 Sm 150.35	63 Eu 151.96	64 Gd 157.25	65 Tb 158.92	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97		
		**	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)		

880-212

- 1. The mass (in grams) of one molecule of water is
 - A. 3.0×10^{-23}
 - B. 1.8×10^{-22}
 - C. 3.0
 - D. 18.0
- 2. The formula for molybdenum(III) sulfate is
 - A. MoSO₄
 - B. $Mo(SO_4)_3$
 - C. $Mo_3(SO_4)_2$
 - D. $Mo_2(SO_4)_3$

3.

$$wC_4H_9OH + xO_2 \rightarrow yCO_2 + zH_2O$$

When this equation is balanced correctly, the coefficient, x, for O_2 is

- A. 6
- B. 9
- C. $\frac{13}{2}$
- D. 13

4.

$H_2 + Cl_2 \rightarrow 2HCl$

Hydrogen and chlorine react according to the equation above. What will be the result of the reaction of 2.0 moles of H_2 and 1.5 moles of Cl_2 ?

- A. 3.5 mol of HCl
- B. 1.5 mol of HCl and 0.5 mol of H_2
- C. 2.0 mol of HCl and 0.5 mol of Cl_2
- D. 3.0 mol of HCl and 0.5 mol of H_2

- 5. 25.0 cm^3 of sulfuric acid solution reacts with 36.2 cm³ of 0.225 moldm⁻³ sodium hydroxide solution. The concentration of the acid is
 - A. $\frac{36.2 \times 0.225}{25.0}$ B. $\frac{2 \times 36.2 \times 0.225}{25.0}$ C. $\frac{36.2 \times 0.225}{2 \times 25.0}$
 - D. $\frac{25.0}{2 \times 36.2 \times 0.225}$
- 6. The correct number of protons and the electron configuration for chlorine is

	number of protons	electron configuration
A.	17	2, 8, 7
B.	17	2, 8, 8
C.	18	2, 8, 7
D.	18	2, 8, 8

7. The relative masses and charges of protons, neutrons and electrons are:

	mass	<u>charge</u>
proton	1	+1
neutron	1	0
electron	negligible	-1

Using these data, what are the values for the mass and charge of the helium nucleus?

	mass	<u>charge</u>
A.	2	+2
B.	2	0
C.	4	+2
D.	4	0

8. When the elements below are arranged in order of **increasing** ionisation energy, what is the correct order?

- A. Li, Na, K
- B. Na, K, Li
- C. Na, Li, K
- D. K, Na, Li
- **9.** Equal numbers of moles of each of the following substances are added to 1 dm³ of water. Which produces the solution with the lowest pH?
 - A. Na₂O
 - B. MgO
 - C. Al₂O₃
 - D. SO₂
- **10.** Most of the oxides of non-metallic elements are
 - A. ionic and basic.
 - B. ionic and acidic.
 - C. covalent and basic.
 - D. covalent and acidic.
- **11.** What is the formula of a compound formed between element A (from Group 2) and element B (from Group 5)?
 - A. AB
 - B. AB₂
 - C. A_2B_5
 - D. A_3B_2

- 12. As atomic number increases within a Group, the electronegativity of the elements
 - A. decreases because the atomic number increases.
 - B. decreases because the atomic size increases.
 - C. increases because the number of energy levels increases.
 - D. increases because the atomic number increases.
- 13. Which molecule has polar bonds but is nonpolar?
 - A. N₂
 - B. O₃
 - C. CO₂
 - D. NH₃
- 14. Which molecule has the largest bond angle?
 - A. BF_3
 - B. CF₄
 - C. NF₃
 - D. OF_2
- **15.** The volume of a gas increases when its temperature is raised at constant pressure. This can be explained by an increase in which of the following?
 - I. Average speed of the molecules
 - II. Average size of the molecules
 - A. I only
 - B. II only
 - C. Both I and II
 - D. Neither I nor II

16.
$$C(s) + O_2(g) \rightarrow CO_2(g) \qquad \Delta H^{\circ} = -393 \text{ kJ mol}^{-1}$$
$$2CO(g) + O_2(g) \rightarrow 2CO_2(g) \qquad \Delta H^{\circ} = -588 \text{ kJ mol}^{-1}$$

According to the data above, what is the enthalpy change (in kJ) for the reaction:

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

A. -87

В. –99

C. –173

D. –220

17.
$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$
 $\Delta H^{\circ} = -137 \text{ kJ}$

Which statement about the information above is correct?

- A. The total energy of the bonds broken in the reactants is **greater** than the total energy of the bonds formed in the product
- B. The bonds broken and the bonds made are of the same strength
- C. The total energy of the bonds broken in the reactants is **less** than the total energy of the bonds formed in the product
- D. No conclusion can be made about the sums of the bond enthalpies in the product compared with the reactants
- **18.** When 50 cm³ of 1 moldm⁻³ HCl is mixed with 50 cm³ of 1 moldm⁻³ NaOH, the temperature of the resulting solution increases by 6 °C. What will be the temperature change when 100 cm³ of each of these solutions are mixed?
 - A. 3 °C
 - B. $6^{\circ}C$
 - C. 12 °C
 - D. $24 \degree C$

- **19.** As the temperature of a reaction between two gases is increased, the rate of the reaction increases. This is **mainly** because
 - A. the concentrations of the reactants increase.
 - B. the molecules collide more frequently.
 - C. the pressure exerted by the molecules increases.
 - D. the fraction of molecules with the energy needed to react increases.

Time

The curve above is obtained for the reaction of an excess of $CaCO_3$ with hydrochloric acid. How and why does the rate of reaction change with time?

	Rate of reaction	Reason
A.	decreases	the HCl becomes more dilute
B.	decreases	the pieces of CaCO ₃ become smaller
C.	increases	the temperature increases
D.	increases	the CO_2 produced acts as a catalyst

21.

 $2H_2(g) + CO(g) \Rightarrow CH_3OH(g)$

Methanol is made in industry by means of the reaction above. The equilibrium expression for this reaction is

A.	$\frac{[CH_{3}OH]}{2[H_{2}][CO]}$
B.	$\frac{[CH_{3}OH]}{[H_{2}]^{2}[CO]}$
	2[H.][CO]

C. $\frac{2[H_2][CO]}{[CH_3OH]}$

D.
$$\frac{[\mathrm{H}_2]^2[\mathrm{CO}]}{[\mathrm{CH}_3\mathrm{OH}]}$$

The industrial synthesis of ammonia is based on the reaction above. Which factor(s) will increase the equilibrium concentration of ammonia?

- I. Increase in pressure
- II. Increase in temperature
- A. I only
- B. II only
- C. Both I and II
- D. Neither I nor II
- 23. When the pH of a solution changes from 2.0 to 4.0, the hydrogen ion concentration
 - A. increases by a factor of 100.
 - B. increases by a factor of 2.
 - C. decreases by a factor of 2.
 - D. decreases by a factor of 100.
- 24. Which will be the same for separate $1 \mod dm^{-3}$ solutions of a strong acid and a weak acid?
 - I. Electrical conductivity
 - II. Concentration of H^+ ions
 - A. I only
 - B. II only
 - C. Both I and II
 - D. Neither I nor II

- **25.** The oxidation number of sulfur in the $HS_2O_5^-$ ion is
 - A. -1
 - B. +3
 - C. +4
 - D. +5

26.

$$2AgNO_{3}(aq) + Zn(s) \rightarrow 2Ag(s) + Zn(NO_{3})_{2}(aq)$$

$$Zn(NO_{3})_{2}(aq) + Co(s) \rightarrow No \text{ reaction}$$

$$2AgNO_{3}(aq) + Co(s) \rightarrow Co(NO_{3})_{2}(aq) + 2Ag(s)$$

Using the above information, the order of increasing activity of the metals is

- A. Ag < Zn < Co
- B. Co < Ag < Zn
- C. Co < Zn < Ag
- D. Ag < Co < Zn
- 27. How many different structural isomers have the formula C_4H_9C1 ?
 - A. 2
 - B. 3
 - C. 4
 - D. 5
- **28.** What will be formed when $CH_2 = CH_2$ reacts with Br_2 in the dark?
 - A. $CH_2Br CH_2Br$
 - B. $CH_3 CHBr_2$
 - C. $CH_2 = CHBr + HBr$
 - D. $CHBr = CHBr + H_2$

- **29.** Which compound can show optical activity?
 - A. CH₃COOH
 - B. H₂NCH₂COOH
 - C. HOCH(CH₃)COOH
 - D. $(CH_3)_3CCOOH$
- **30.** When the compounds below are listed in order of **decreasing** boiling point (highest to lowest) what is the correct order?

	1.	ethane	2.	fluoroethane	3.	ethanol	4.	ethanoic acid
A.	4, 3, 1	1, 2						
B.	4, 3, 2	2, 1						
C.	3, 4, 2	1, 2						
D.	2, 1, 3	3, 4						