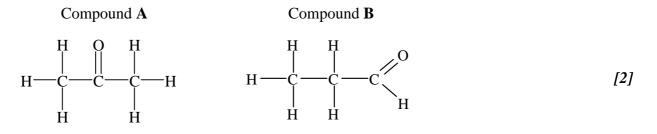


MARKSCHEME

November 2000

CHEMISTRY

Standard Level

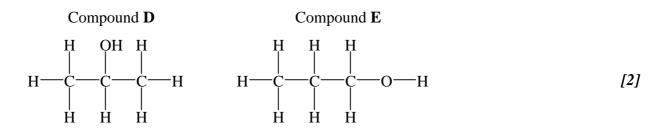

Paper 3

[2]

OPTION A – HIGHER ORGANIC CHEMISTRY

A1. (*Give* [1] for each correct structure and [1] for correct reasoning for each structure.)

The infra-red absorption at 1700 cm⁻¹ indicates C == O; as **A** cannot be oxidised it must be the alkanone / as **B** is oxidised it must be the alkanal. [2]



C (is formed by oxidation of the alkanal **B** and has acidic properties so) must be an alkanoic acid. [1]

The infra-red data $(3230-3550 \text{ cm}^{-1})$ indicates O—H bond;

 M_r value of 60 indicates that **D** and **E** are both alkanols with formula C₃H₈O. **D** must be a secondary alkanol as it is formed by reduction of **A**, an alkanone; **E** must be a primary alkanol as it is formed from reducing **B**, an alkanal. (*any two for* [2])

A2. (a) (i) Linear OR H—C
$$\equiv$$
N [1]

(ii) Trigonal planar **OR**
$$H$$
 C=O [1]

(iii) Tetrahedral OR
$$C$$
 Cl H Cl [1]

(b) (i) Six [1]
(ii) Octahedral OR
$$\begin{bmatrix} C_{l} & C_{l} \\ C_{l} & C_{l} \end{bmatrix}^{2^{-}}$$
 [1]

OPTION B – HIGHER PHYSICAL CHEMISTRY

B1. (a)
$$C_2H_5COOH + H_2O \rightleftharpoons C_2H_5COO^- + H_3O^+$$

$$(\mathbf{OR} C_2 H_5 COOH \rightleftharpoons C_2 H_5 COO^- + H^+)$$
[1]

(b)
$$K_{a} = \frac{\left[C_{2}H_{5}COO^{-}\right] \times [H^{+}]}{\left[C_{2}H_{5}COOH\right]}$$
 [1]

$$K_{\rm a} = 1.35 \times 10^{-5} \text{ mol dm}^{-3} \text{ (units not necessary for mark)}$$
[1]

(c)
$$1.35 \times 10^{-5} = \frac{[H^+]^2}{0.01}$$
 [1]

$$[H^{+}] = \sqrt{1.35 \times 10^{-5} \times 0.01} = 3.67 \times 10^{-4} \text{ mol dm}^{-3}$$
[1]

(d) For NaOH,
$$n = 0.01 \times \frac{200}{1000} = 0.002 \text{ mol}$$

For acid,
$$n = 0.01 \times \frac{300}{1000} = 0.003$$
 mol

After reaction,
$$n = 0.003 - 0.002 = 0.001$$
 mole of acid remaining. [1]
 $\begin{bmatrix} C \ H \ COO^{-1} \end{bmatrix} = 0.004 \text{ mol dm}^{-3} \begin{bmatrix} C \ H \ COOH \end{bmatrix} = 0.002 \text{ mol dm}^{-3}$ [1]

$$\begin{bmatrix} C_2 H_5 COO \end{bmatrix} = 0.004 \text{ moruly}, \begin{bmatrix} C_2 H_5 COO H \end{bmatrix} = 0.002 \text{ moruly}$$

$$[\mathrm{H}^{+}] = 1.35 \times 10^{-5} \times \frac{0.002}{0.004} = 6.75 \times 10^{-6}$$
 [1]

$$pH = -\log_{10}[H^+] = 5.17$$
 [1]

B2. (a) The value is positive as a solid is forming a gas which is more disordered. [1]

(b)
$$\Delta G^{\circ} = \Delta H^{\circ} = T\Delta S^{\circ}$$
 [1]
= $178 - 1298 \times \frac{161}{1000}$ = $+130 \text{ kJ mol}^{-1}$ [1]

(c) In a spontaneous reaction the total entropy of a system and its surroundings increases. (Accept that for a spontaneous reaction ΔG must be less than zero.) [1]

(d) For the reaction to become spontaneous $\Delta H^{\circ} - T\Delta S^{\circ} < 0.$ [1] $T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{178 \times 10^{3}}{161} > 1106 \text{ K (833 °C)}$ [1]

OPTION C – HUMAN BIOCHEMISTRY

C1.	(a)	Retinol will contain an —OH (alkanol) group ([1]). Retinal will contain a —CHO (alkanal) group ([1]). (If both alkanol and alkanal are given but no structures, award [1])	[2]
	(b)	Two pairs of electrons (four electrons) between the two carbon atoms.	[1[
	(c)	$M_{\rm r} \text{ for retinol} = (19 \times 12.01) + (30 \times 1.01) + (1 \times 16.00) = 274.5$ Concentration is 0.30 g dm ⁻³ which is $1.1 \times 10^{-3} \text{ mol dm}^{-3}$. (accept $1.09 \times 10^{-3} \text{ mol dm}^{-3}$)	[1] [1]
	(d)	More fat soluble. Because the polar O—H bond will be insignificant compared to the bulky non-polar 'tail' of the molecule.	[1] on-polar [1]
	OR OR	Because there is a very low concentration (of retinol in the blood). Non-polar hydrophobic chain will be more soluble in fat than polar water.	
C2.	(a)	Iodine.	[1]
	(b)	Any <i>two</i> from: acid, —COOH; amine, $-NH_2$; alkoxyalkane (ether), $-O$; (<i>do not accept amide for</i> $-NH_2$)	[4]
		(Give [1] for each correct name and [1] for each correct formula. Award no marks for C_6H_5 – phenyl.)	
	(c)	Hormones are chemical messengers OR substances that regulate bodily processes such as growth and metabolism.	[1]

Hormones are transported by the blood stream.[1](d) Thyroxine regulates the rate at which cells use oxygen **OR** controls the rate of
carbohydrate metabolism **OR** controls the rate of protein synthesis and breakdown **OR**
stimulates energy production in cells.[1]

OPTION D – ENVIRONMENTAL CHEMISTRY

D1.	(a)	1000:1 (do not accept 1:1000)						
	(b)	Sulfuric acid (accept sulfuric(IV) acid or sulfurous acid).						
		(No mark if just the formula is given.)						
		$\begin{array}{lll} \mathbf{S} + \mathbf{O}_2 \rightarrow \mathbf{SO}_2 & \mathbf{OR} & 2\mathbf{SO}_2 + \mathbf{O}_2 \rightarrow 2\mathbf{SO}_3 \\ \mathbf{SO}_2 + \mathbf{H}_2\mathbf{O} \rightarrow \mathbf{H}_2\mathbf{SO}_3 & \mathbf{OR} & \mathbf{SO}_3 + \mathbf{H}_2\mathbf{O} \rightarrow \mathbf{H}_2\mathbf{SO}_4 \end{array}$	[1] [1]					
	(c)	Nitric acid (accept nitrous acid or nitric(III) acid).						
		(Award [1 mark] each for any two different ways, for example:)						
		 Use a catalytic converter; use a richer petrol:air mixture; car sharing; switching to a different fuel such as solar power or electricity <i>etc;</i> thermal exhaust system; increase the use of public transport; switch to a car with a 'lean-burn' engine. 						
	(d)	(d) $CaCO_3 + 2H^+ \rightarrow Ca^{2+} + CO_2 + H_2O$ (accept H_2CO_3). (Accept the full equation with either nitric or sulfuric acid.)						
	(0)							
D2.	(a)	(a) (i) As the temperature increases the solubility of oxygen decreases.						
	 (ii) As organic pollutants decompose they use up available oxygen so the amount of dissolved oxygen decreases. (iii) Nitrates and phosphates act as nutrients and increase the growth of algae. As the algae die they use up dissolved oxygen (eutrophication). (b) The BOD is the quantity of oxygen (in ppm) utilised when the organic matter in a fixed volume of water is decomposed biologically over a set time period (usually five days) 							
	(c)	Amount of $Na_2S_2O_3$ in 10 cm ³ of 0.100 moldm ⁻³ $Na_2S_2O_3$ is	[1]					
	$\frac{10}{1000}$ × 0.100 = 1.00 × 10 ⁻³ moles.							
		One mole of O_2 reacts to give two moles of MnO_2 which give two moles of I_2 which react with four moles of $S_2O_3^{2-}$ so that the amount of oxygen present in 1000cm ³ is						
		$\frac{1}{4} \times 1.00 \times 10^{-3} = 2.50 \times 10^{-4}$ moles.						

Mass of 2.50×10^{-4} moles of O₂ is $32 \times 2.50 \times 10^{-4} = 8.00 \times 10^{-3}$ g. Concentration of dissolved oxygen is 8.00×10^{-3} g dm⁻³ (or 8 mg dm⁻³). [1]

OPTION E – CHEMICAL INDUSTRIES

E1.	(a)	(i)	Carbon.	[1]			
		(ii)	Contains higher percentage of iron.	[1]			
	(b)	(i)	Oxygen and powdered lime (calcium oxide / calcium carbonate). (do not accept metals such as chromium)	[2]			
		(ii)	The impurities are oxidised OR oxidation takes place. The oxidised impurities combine with the lime to form slag OR an acid–base	[1] [1]			
			reaction takes place (accept equation).	[1]			
	(c)	It is more expensive to produce aluminium from its ores as it requires more energy (even though Al is more abundant in the earth's crust than Fe).					
E2.	(a)	Crude oil was formed from marine organisms which contained sulfur (in their amino acids).					
	(b)	Sulfur can poison many of the catalysts used in the refining processes (by reacting irreversibly with their reactive sites).					
	OR	•					
	(c)	$C_{10}H_{22} \rightarrow C_8H_{18} + C_2H_4$ (accept other balanced combinations of an alkane and an alkene). Larger molecules are broken down into smaller more useful molecules (the alkane is used as gasoline and the alkene as feedstock for polymers).					
	(d)	Isomerisation involves rearrangement to form another isomer. Alkylation involves the combination of alkanes and alkene (to form higher-grade gasolines).					
						(e)	(i)
		(ii)	Haber process (manufacture of ammonia).	[1]			

– 12 –

OPTION F – FUELS AND ENERGY

F1.	F1. (a) Methane / CH_4 .						[1]
	(b)	b) Carbon monoxide OR hydrogen. (accept correct formulas)					
	(c)	 Any two from: particulates (soot); C_xH_y (accept HC or hydrocarbons); CO (do not accept SO_x or NO_x). 				[2]	
	(d) Biomass is produced (continuously) from waste products or quick growing crop therefore there is no need to use foreign exchange to import oil or other fuels.OR Because fossil fuels are running out / biomass is obtained from recyclable materials.						
F2.	(a)	Splitting of an (unstable) nucleus.				[1]	
	(b) There is a small mass loss which is converted into a large amount of energy.						[1]
	(c)				_		
		X	n	b	1		
		Y	Pu	с	0		
		Z	e	d	0		
		a	92	e	-1		
		(Award [½] for each, round d	own.)			[4]
(d) To prevent radioactivity from escaping. Closed loop primary coolant: water, heavy water, sodium, CO_2 .							[1] [1]
(e) $\frac{1.2 \times 10^{-12}}{1.5 \times 10^{-13}} = 8 = 2^n$ therefore number of half-lives (n) is 3.						[1] [4] [1]	
	Age of object is $3 \times 5730 = 1.7 \times 10^4$ years (17190 years).						[1]