

## CHEMISTRY STANDARD LEVEL PAPER 1

Tuesday 16 May 2000 (afternoon)

45 minutes

## INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

|                          |                           |                         |                           | Period                    | Periodic Tabl            | le                        |                           |                           |                           |                           |                           |                           |                           |                           |                           |                          |                           |
|--------------------------|---------------------------|-------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|
| 1<br><b>H</b><br>1.01    |                           |                         |                           | Atomic Number             | Number                   |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                          | 2<br><b>He</b><br>4.00    |
| 3<br>Li<br>6.94          | 4<br><b>Be</b><br>9.01    |                         |                           | Atomic Mass               | Mass                     |                           |                           |                           |                           |                           |                           | 5<br><b>B</b><br>10.81    | 6<br>C<br>12.01           | 7<br>N<br>14.01           | 8<br>0<br>16.00           | 9<br><b>F</b><br>19.00   | 10<br>Ne<br>20.18         |
| 11<br>Na<br>22.99        | 12<br>Mg<br>24.31         |                         | -                         |                           |                          |                           |                           |                           |                           |                           |                           | 13<br>Al<br>26.98         | 14<br><b>Si</b><br>28.09  | 15<br><b>P</b><br>30.97   | 16<br>S<br>32.06          | 17<br>CI<br>35.45        | 18<br>Ar<br>39.95         |
| 19<br><b>K</b><br>39.10  | 20<br><b>Ca</b><br>40.08  | 21<br>Sc<br>44.96       | 22<br><b>Ti</b><br>47.90  | 23<br>V<br>50.94          | 24<br>Cr<br>52.00        | 25<br>Mn<br>54.94         | 26<br>Fe<br>55.85         | 27<br>Co<br>58.93         | 28<br>Ni<br>58.71         | 29<br>Cu<br>63.55         | 30<br><b>Zn</b><br>65.37  | 31<br><b>Ga</b><br>69.72  | 32<br>Ge<br>72.59         | 33<br><b>As</b><br>74.92  | 34<br>Se<br>78.96         | 35<br><b>Br</b><br>79.90 | 36<br><b>Kr</b><br>83.80  |
| 37<br><b>Rb</b><br>85.47 | 38<br>Sr<br>87.62         | 39<br><b>Y</b><br>88.91 | 40<br><b>Zr</b><br>91.22  | 41<br><b>Nb</b><br>92.91  | 42<br><b>Mo</b><br>95.94 | 43<br><b>Tc</b><br>98.91  | 44<br><b>Ru</b><br>101.07 | 45<br><b>Rh</b><br>102.91 | 46<br><b>Pd</b><br>106.42 | 47<br>Ag<br>107.87        | 48<br>Cd<br>112.40        | 49<br><b>In</b><br>114.82 | 50<br>Sn<br>118.69        | 51<br>Sb<br>121.75        | 52<br><b>Te</b><br>127.60 | 53<br>I<br>126.90        | 54<br><b>Xe</b><br>131.30 |
| 55<br>Cs<br>132.91       | 56<br><b>Ba</b><br>137.34 | 57 †<br>La<br>138.91    | 72<br>Hf<br>178.49        | 73<br><b>Ta</b><br>180.95 | 74<br><b>W</b><br>183.85 | 75<br><b>Re</b><br>186.21 | 76<br><b>Os</b><br>190.21 | 77<br><b>Ir</b><br>192.22 | 78<br>Pt<br>195.09        | 79<br><b>Au</b><br>196.97 | 80<br><b>Hg</b><br>200.59 | 81<br><b>TI</b><br>204.37 | 82<br><b>Pb</b><br>207.19 | 83<br><b>Bi</b><br>208.98 | 84<br><b>Po</b><br>(210)  | 85<br>At<br>(210)        | 86<br><b>Rn</b><br>(222)  |
| 87<br><b>Fr</b><br>(223) | 88<br><b>Ra</b><br>(226)  | 89 ‡<br>Ac<br>(227)     | 104<br><b>Rf</b><br>(261) | 105<br><b>Db</b><br>(262) | 106<br>Sg<br>(263)       | 107<br><b>Bh</b><br>(262) | 108<br>Hs                 | 109<br>Mt                 |                           |                           |                           |                           |                           |                           |                           |                          |                           |
|                          |                           | - <del>1-</del>         | 58<br>Ce<br>140.12        | 59<br><b>Pr</b><br>140.91 | 60<br>Nd<br>144.24       | 61<br><b>Pm</b><br>146.92 | 62<br>Sm<br>150.35        | 63<br>Eu<br>151.96        | 64<br>Gd<br>157.25        | 65<br><b>Tb</b><br>158.92 | 66<br>Dy<br>162.50        | 67<br><b>Ho</b><br>164.93 | 68<br>Er<br>167.26        | 69<br><b>Tm</b><br>168.93 | 70<br><b>Yb</b><br>173.04 | 71<br>Lu<br>174.97       |                           |
|                          |                           | <del></del>             | 90<br><b>Th</b><br>232.04 | 91<br><b>Pa</b><br>231.04 | 92<br>U<br>238.03        | 93<br><b>Np</b><br>(237)  | 94<br><b>Pu</b><br>(242)  | 95<br>Am<br>(243)         | 96<br><b>Cm</b><br>(247)  | 97<br><b>Bk</b><br>(247)  | 98<br>Cf<br>(251)         | 99<br>Es<br>(254)         | 100<br><b>Fm</b><br>(257) | 101<br><b>Md</b><br>(258) | 102<br><b>No</b><br>(259) | 103<br>Lr<br>(260)       |                           |

- 1. How many molecules are there in 180 g of  $H_2O$ ?
  - A.  $6.0 \times 10^{22}$
  - B.  $6.0 \times 10^{23}$
  - C. 6.0×10<sup>24</sup>
  - D.  $6.0 \times 10^{25}$
- 2. Which of the following compounds has the greatest **empirical** formula mass?
  - A.  $C_6H_6$
  - B.  $C_4H_{10}$
  - C. C<sub>3</sub>H<sub>6</sub>
  - D.  $C_2H_6$
- 3.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

When heated,  $CaCO_3$  ( $M_r = 100$ ) decomposes as shown above. When 20 g of impure  $CaCO_3$  is heated, 0.15 moles of  $CO_2$  are obtained. What is the percentage purity of the  $CaCO_3$ ? (Assume that none of the impurities produce  $CO_2$  upon heating.)

- A. 15
- B. 25
- C. 55
- D. 75
- 4.

$$vC_2H_3Cl(g) + wO_2(g) \rightarrow xCO_2(g) + yH_2O(g) + zHCl(g)$$

Chloroethene can be burned in oxygen as shown above. What is the value of *w* when v = 2?

- A. 2
- B. 3
- C. 4
- D. 5

- 5. What volume (in cm<sup>3</sup>) of 0.200 moldm<sup>-3</sup> NaOH is required to neutralise 20.0 cm<sup>3</sup> of 0.100 moldm<sup>-3</sup> H<sub>2</sub>SO<sub>4</sub>?
  - A. 5.0
  - B. 10.0
  - C. 20.0
  - D. 40.0
- 6. Which of the following particles contain more electrons than **neutrons**?
  - I.  ${}^{1}_{1}H$
  - II.  $^{35}_{17}$ Cl<sup>-</sup>
  - III.  $^{39}_{19}$ K<sup>+</sup>
  - A. I only
  - B. II only
  - C. I and II only
  - D. II and III only
- 7. What information about the structure of a hydrogen atom can be gained from its emission spectrum?
  - A. Most of the mass of the atom is in its nucleus.
  - B. A hydrogen atom contains one proton and one electron.
  - C. The electron in the hydrogen atom is held near the nucleus.
  - D. The electron may exist in any of several energy levels.
- **8.** An element has the electron configuration 2, 8, 6. What is the element?
  - A. C
  - B. Si
  - C. S
  - D. Ne

- 9. Which one of the following increases in value from Li to Cs?
  - A. Atomic radius
  - B. Electronegativity
  - C. Ionisation energy
  - D. Melting point
- 10. Which set of reactants below is expected to produce the most vigorous reaction?
  - A.  $Na(s) + Cl_2(g)$
  - B.  $Na(s) + Br_2(g)$
  - C.  $K(s) + Cl_2(g)$
  - D.  $K(s) + Br_2(g)$
- **11.** A Group 1 element, *X*, bonds with a Group 7 element, *Y*. What is the most likely formula and type of bonding in this compound?

| A. | $X_2Y$ | ionic    |
|----|--------|----------|
| B. | XY     | ionic    |
| C. | XY     | covalent |
| D. | $XY_2$ | covalent |

- 12. In which of the following is there at least one double bond?
  - I. O<sub>2</sub>
  - II.  $CO_2$
  - III.  $C_2H_4$
  - A. I only
  - B. III only
  - C. II and III only
  - D. I, II and III

13. According to VSEPR theory, which molecule would be expected to have the smallest bond angle?

- A.  $H_2O$
- B. H<sub>2</sub>CO
- C. CH<sub>4</sub>
- D. NH<sub>3</sub>
- 14. In which of the following substances would hydrogen bonding be expected to occur?
  - I. CH<sub>4</sub>
  - II. CH<sub>3</sub>COOH
  - III. CH<sub>3</sub>OCH<sub>3</sub>
  - A. II only
  - B. I and III only
  - C. II and III only
  - D. I, II and III
- 15. Which of the following best accounts for the observation that gases are easily compressed?
  - A. Gas molecules have negligible attractive forces for one another.
  - B. The volume occupied by the gas is much greater than that occupied by the molecules.
  - C. The average energy of the molecules in a gas is proportional to the absolute temperature of the gas.
  - D. The collisions between gas molecules are elastic.

16.



The heating curve for 10 g of a substance is given above. How much energy would be required to melt completely 20 g of the substance that is initially at  $10^{\circ}$  C?

- A. 2400 J
- B. 1200 J
- C. 800 J
- D. 400 J
- 17. The bond enthalpies of  $H_2$ ,  $Br_2$  and HBr are 436, 192, and 366 kJ mol<sup>-1</sup> respectively. Use these values to calculate  $\Delta H$  in kJ for the reaction;

$$H_2(g) + Br_2(g) \rightarrow 2HBr(g)$$

- A. +262
- B. -104
- C. –208
- D. –262

**18.** 
$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$
  $\Delta H = 180.4 \text{ kJ}$   
 $N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$   $\Delta H = 66.4 \text{ kJ}$ 

Use the enthalpy values above to calculate  $\Delta H$  for the reaction;

$$NO(g) + \frac{1}{2}O_2(g) \rightarrow NO_2(g)$$

- А. –57 kJ
- B. -114 kJ
- C. 57 kJ
- D. 114 kJ
- **19.** Which graph best represents the change in concentration of products with time for a reaction as it goes to completion?



- 20. Some collisions between reactant molecules do not form products. This is most likely because
  - A. the molecules do not collide in the proper ratio.
  - B. the molecules do not have enough energy.
  - C. the concentration is too low.
  - D. the reaction is at equilibrium.
- 21. Which statement is true about chemical reactions at equilibrium?
  - A. The forward and backward reactions proceed at equal rates
  - B. The forward and backward reactions have stopped
  - C. The concentrations of the reactants and products are equal
  - D. The forward reaction is exothermic

The equilibrium constant for the reaction above is  $1.0 \times 10^{-14}$  at  $25^{\circ}$  C and  $2.1 \times 10^{-14}$  at  $35^{\circ}$  C. What can be concluded from this information?

- A.  $[H_3O^+]$  decreases as the temperature is raised.
- B.  $[H_3O^+]$  is greater than  $[OH^-]$  at 35° C.
- C. Water is a stronger electrolyte at  $25^{\circ}$  C.
- D. The ionisation of water is endothermic.
- 23. Which of the following statements about aqueous solutions of most weak acids is/are correct?
  - I. They react with carbonates to produce carbon dioxide
  - II. They conduct electricity better than strong acids
  - A. I only
  - B. II only
  - C. Both I and II
  - D. Neither I nor II
- 24. 10  $\text{cm}^3$  of an HCl solution with a pH value of 2 was mixed with 90  $\text{cm}^3$  of water. What will be the pH of the resulting solution?
  - A. 1
  - B. 3
  - C. 5
  - D. 7

**25.**  $MnO_2 + 4HCl \rightarrow Mn^{2+} + 2Cl^- + Cl_2 + 2H_2O$ 

Which substance is produced by oxidation in the equation above?

- A.  $Mn^{2+}$
- B.  $Cl^{-}$
- C. Cl<sub>2</sub>
- D. H<sub>2</sub>O

26. In the electrolysis of molten sodium chloride, the sodium ion goes to the

- A. positive electrode where it undergoes oxidation.
- B. negative electrode where it undergoes oxidation.
- C. positive electrode where it undergoes reduction.
- D. negative electrode where it undergoes reduction.
- 27. Which formula represents an amide?
  - A.  $CH_3CH_2NH_2$
  - B.  $CH_3CH_2N(CH_3)_2$
  - C.  $H_2NCH_2CO_2H$
  - D. CH<sub>3</sub>CONH<sub>2</sub>
- **28.** What is the correct order of reaction types in the following sequence?

## $C_{2}H_{5}Cl \xrightarrow{I} C_{2}H_{5}OH \xrightarrow{II} CH_{3}COOH \xrightarrow{III} CH_{3}COOCH_{3}$

|    | Ι            | II           | III            |
|----|--------------|--------------|----------------|
| A. | substitution | oxidation    | esterification |
| B. | addition     | substitution | substitution   |
| C. | oxidation    | substitution | addition       |
| D. | substitution | oxidation    | substitution   |

**29.** Which names are correct for the following isomers of  $C_6H_{14}$ ?



- A. I only
- B. I and II only
- C. I and III only
- D. I, II and III
- **30.** Which carbon-containing product is most likely from the reaction of  $C_2H_4$  and  $Br_2$ ?
  - A.  $C_2H_5Br$
  - B.  $C_2H_4Br_2$
  - C.  $C_2H_3Br$
  - $D. \quad C_2H_2Br_2$