CHEMISTRY
 STANDARD LEVEL
 PAPER 1

Tuesday 16 May 2000 (afternoon)
45 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
Periodic Table

$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number Atomic Mass													$\begin{gathered} 2 \\ \mathbf{H e} \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathbf{B e} \\ 9.01 \end{gathered}$											5 \mathbf{B} 10.81	$\stackrel{6}{\mathbf{C}} \begin{gathered} 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \mathbf{C l} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S c} \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \text { Mn } \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \text { Tc } \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \mathbf{S n} \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.34 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{array}{\|c} 73 \\ \text { Ta } \\ 180.95 \end{array}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \text { Pt } \\ 195.09 \end{gathered}$	$\begin{gathered} 79 \\ \text { Au } \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \text { Tl } \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (261) \end{gathered}$	$\begin{gathered} 105 \\ \mathbf{D b} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ (263) \end{gathered}$	$\begin{gathered} 107 \\ \text { Bh } \\ (262) \end{gathered}$	$\begin{aligned} & 108 \\ & \mathbf{H s} \end{aligned}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	146.92	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97

Ş
은
\bigcirc ๑¢
～系気过
すき
न～®

$+$

1. How many molecules are there in 180 g of $\mathrm{H}_{2} \mathrm{O}$?
A. $\quad 6.0 \times 10^{22}$
B. 6.0×10^{23}
C. $\quad 6.0 \times 10^{24}$
D. $\quad 6.0 \times 10^{25}$
2. Which of the following compounds has the greatest empirical formula mass?
A. $\mathrm{C}_{6} \mathrm{H}_{6}$
B. $\mathrm{C}_{4} \mathrm{H}_{10}$
C. $\mathrm{C}_{3} \mathrm{H}_{6}$
D. $\mathrm{C}_{2} \mathrm{H}_{6}$
3.

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

When heated, $\mathrm{CaCO}_{3}\left(M_{\mathrm{r}}=100\right)$ decomposes as shown above. When 20 g of impure CaCO_{3} is heated, 0.15 moles of CO_{2} are obtained. What is the percentage purity of the CaCO_{3} ? (Assume that none of the impurities produce CO_{2} upon heating.)
A. 15
B. 25
C. 55
D. 75
4.

$$
v \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}(\mathrm{~g})+w \mathrm{O}_{2}(\mathrm{~g}) \rightarrow x \mathrm{CO}_{2}(\mathrm{~g})+y \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+z \mathrm{HCl}(\mathrm{~g})
$$

Chloroethene can be burned in oxygen as shown above. What is the value of w when $v=2$?
A. 2
B. 3
C. 4
D. 5
5. What volume (in cm^{3}) of $0.200 \mathrm{moldm}^{-3} \mathrm{NaOH}$ is required to neutralise $20.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{moldm}^{-3}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$?
A. 5.0
B. 10.0
C. 20.0
D. 40.0
6. Which of the following particles contain more electrons than neutrons?
I. $\quad{ }_{1}^{1} \mathrm{H}$
II. $\quad{ }_{17}^{35} \mathrm{Cl}^{-}$
III. ${ }_{19}^{39} \mathrm{~K}^{+}$
A. I only
B. II only
C. I and II only
D. II and III only
7. What information about the structure of a hydrogen atom can be gained from its emission spectrum?
A. Most of the mass of the atom is in its nucleus.
B. A hydrogen atom contains one proton and one electron.
C. The electron in the hydrogen atom is held near the nucleus.
D. The electron may exist in any of several energy levels.
8. An element has the electron configuration $2,8,6$. What is the element?
A. C
B. Si
C. S
D. Ne
9. Which one of the following increases in value from Li to Cs?
A. Atomic radius
B. Electronegativity
C. Ionisation energy
D. Melting point
10. Which set of reactants below is expected to produce the most vigorous reaction?
A. $\mathrm{Na}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})$
B. $\mathrm{Na}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{~g})$
C. $\mathrm{K}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})$
D. $\mathrm{K}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{~g})$
11. A Group 1 element, X, bonds with a Group 7 element, Y. What is the most likely formula and type of bonding in this compound?
A. $X_{2} Y$ ionic
B. $X Y$ ionic
C. $X Y$ covalent
D. $X Y_{2}$ covalent
12. In which of the following is there at least one double bond?
I. $\quad \mathrm{O}_{2}$
II. CO_{2}
III. $\mathrm{C}_{2} \mathrm{H}_{4}$
A. I only
B. III only
C. II and III only
D. I, II and III
13. According to VSEPR theory, which molecule would be expected to have the smallest bond angle?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{CO}$
C. CH_{4}
D. NH_{3}
14. In which of the following substances would hydrogen bonding be expected to occur?
I. CH_{4}
II. $\mathrm{CH}_{3} \mathrm{COOH}$
III. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
A. II only
B. I and III only
C. II and III only
D. I, II and III
15. Which of the following best accounts for the observation that gases are easily compressed?
A. Gas molecules have negligible attractive forces for one another.
B. The volume occupied by the gas is much greater than that occupied by the molecules.
C. The average energy of the molecules in a gas is proportional to the absolute temperature of the gas.
D. The collisions between gas molecules are elastic.
16.

The heating curve for 10 g of a substance is given above. How much energy would be required to melt completely 20 g of the substance that is initially at $10^{\circ} \mathrm{C}$?
A. 2400 J
B. 1200 J
C. 800 J
D. 400 J
17. The bond enthalpies of $\mathrm{H}_{2}, \mathrm{Br}_{2}$ and HBr are 436,192 , and $366 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Use these values to calculate ΔH in kJ for the reaction;

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{~g})
$$

A. +262
B. -104
C. -208
D. -262
18.

$$
\begin{array}{cl}
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{(\mathrm{g})} & \Delta H=180.4 \mathrm{~kJ} \\
\mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) & \Delta H=66.4 \mathrm{~kJ}
\end{array}
$$

Use the enthalpy values above to calculate ΔH for the reaction;

$$
\mathrm{NO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})
$$

A. -57 kJ
B. -114 kJ
C. 57 kJ
D. $\quad 114 \mathrm{~kJ}$
19. Which graph best represents the change in concentration of products with time for a reaction as it goes to completion?
A.

B.

C.

D.

Time
20. Some collisions between reactant molecules do not form products. This is most likely because
A. the molecules do not collide in the proper ratio.
B. the molecules do not have enough energy.
C. the concentration is too low.
D. the reaction is at equilibrium.
21. Which statement is true about chemical reactions at equilibrium?
A. The forward and backward reactions proceed at equal rates
B. The forward and backward reactions have stopped
C. The concentrations of the reactants and products are equal
D. The forward reaction is exothermic
22.

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The equilibrium constant for the reaction above is 1.0×10^{-14} at $25^{\circ} \mathrm{C}$ and 2.1×10^{-14} at $35^{\circ} \mathrm{C}$. What can be concluded from this information?
A. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$decreases as the temperature is raised.
B. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is greater than $\left[\mathrm{OH}^{-}\right]$at $35^{\circ} \mathrm{C}$.
C. Water is a stronger electrolyte at $25^{\circ} \mathrm{C}$.
D. The ionisation of water is endothermic.
23. Which of the following statements about aqueous solutions of most weak acids is/are correct?
I. They react with carbonates to produce carbon dioxide
II. They conduct electricity better than strong acids
A. I only
B. II only
C. Both I and II
D. Neither I nor II
24. $10 \mathrm{~cm}^{3}$ of an HCl solution with a pH value of 2 was mixed with $90 \mathrm{~cm}^{3}$ of water. What will be the pH of the resulting solution?
A. 1
B. 3
C. 5
D. 7
25.

$$
\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{Cl}^{-}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Which substance is produced by oxidation in the equation above?
A. Mn^{2+}
B. Cl^{-}
C. Cl_{2}
D. $\mathrm{H}_{2} \mathrm{O}$
26. In the electrolysis of molten sodium chloride, the sodium ion goes to the
A. positive electrode where it undergoes oxidation.
B. negative electrode where it undergoes oxidation.
C. positive electrode where it undergoes reduction.
D. negative electrode where it undergoes reduction.
27. Which formula represents an amide?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$
C. $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
D. $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
28. What is the correct order of reaction types in the following sequence?

I

A.	substitution	oxidation	esterification
B.	addition	substitution	substitution
C.	oxidation	substitution	addition
D.	substitution	oxidation	substitution

29. Which names are correct for the following isomers of $\mathrm{C}_{6} \mathrm{H}_{14}$?
I.

II.

2-ethyl-2-methylpropane
III.

2,3-dimethylbutane
A. I only
B. I and II only
C. I and III only
D. I, II and III
30. Which carbon-containing product is most likely from the reaction of $\mathrm{C}_{2} \mathrm{H}_{4}$ and Br_{2} ?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$
B. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
C. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Br}$
D. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$

