ACID BASE REVIEW

1. Identify Lewis Acid, in the following reactions:

a.
$$Zn^{+2} + 4H_2O$$
 \longrightarrow $Zn (H_2O)_4^{+2}$
b. $BF_3 + F^{-1}$ \longrightarrow BF_4^{-1}
c. $Ag^{+1} + 2NH_3$ \longrightarrow $Ag(NH_3)_2^{+1}$

2. Identify the acid – base conjugate pairs in each of the following reactions according with the Bronsted – Lowry framework:

b)
$$NO_2$$
 + H_2O \longrightarrow HNO₂ + OH -

c)
$$H_2PO_4$$
 + NH_3 + NH_4 + NH_4

The ionization constant for hypobromous acid, HOBr is:

$$HOBr_{(aq)} + H_2O_{(aq)} \longrightarrow H_3O^+ + OBr^-$$
 $Ka = 2.0 * 10^{-9}$

What is the value of the equilibrium constant for the following reaction?

$$H_3O^+ + OBr^- + HOBr_{(aq)} + H_2O_{(aq)}$$

(Answer: $5.0 * 10^8$)

Given the K_a for HOCN is $3.3*10^{-4}$. What is K_b for OCN-?

Boric acid, H_3BO_3 , is commonly used in eyewash solution in chemistry laboratories to neutralize bases splashed in the eye. It acts as a monoprotic acid, but the dissociation reaction is slightly different from other acids:

$$B(OH)_{3(aq)} \quad + \quad H_2O \qquad \qquad \qquad B(OH)_{4~(aq)} \quad + \quad \ H^+_{(aq)}$$

Calculate the pH of a 0.50 moldm^{-3} solution of boric acid. The K_a for the boric acid is $5.8 * 10^{-10}$.

What is the pH of a solution that is $0.10 \text{ mol dm}^{-3} \text{ KNO}_2$ and $0.15 \text{ mol dm}^{-3} \text{ HNO}_2$ (nitrous acid)?

Use Le Chatêlier's Principle to predict the effect of the following changes on the extent of the hydrolysis of the NaNO₂ (sodium nitrite) solution, upon the addition of:

(Recall the important equation is the hydrolysis of the nitrite ion, NO₂.)

$$NO_2^- + H_2O \longrightarrow HNO_2 + OH^-$$

Calculate:

a) pH of a 0.2 mol dm⁻³ NaHSO₃ (K_a for HSO₃ = 6.2 * 10⁻⁸).

b) pH of a 0.2 moldm⁻³ phenoxide ion, $C_6H_5O^-$, a weak base $(K_b = 7.7 *10^{-5})$

c) pH of a 0.2 moldm⁻³ NH₄Cl? $(K_b (NH_3) = 1.8 * 10^{-5})$

d) pH of a 0.2 moldm⁻³ KCN (K_a (HCN = 4.9 *10⁻¹⁰)

- (1) Neutral Solution
- (2) Acidic Solution
- (3) Basic Solution

- i) NaH₂PO₄
- ii) Na₃PO₄
- iii) KCl
- iv) FeCl₂
- v) KCN
- 10. Calculate the pH of a buffer solution that contains:
 - a) 0.25 mol dm⁻³ benzoic acid (C_6H_5COOH) acid 0.15 mol dm⁻³ sodium benzoate (C_6H_5COONa) given ($K_a = 6.5*10^{-10}$).
 - b) $500 \text{ cm}^3 \text{ of } 0.10 \text{ moldm}^{-3} \text{ NaOCl and } 500 \text{ cm}^3 \text{ of } 0.20 \text{ moldm}^{-3} \text{ HOCl, what is the pH of the solution? (Ka (HOCl) = <math>3.2*10^{-8}$)

(Answer: 7.19)

You are asked to go into the laboratory and prepare an ethanoic acid – sodium ethanoate buffer solution, with a pH of 4.00 ± 0.02 . What mole ratio of CH₃COOH to CH₃COONa should be used (K₃ (CH₃COOH) = $1.8*10^{-5}$)

(Answer = 5.50)

Over what range of pH is a HOCl – NaOCl buffer effective?

 $(K_a (HOC1) = 3.2*10^{-8})$

(Answer: 6.5 - 8.5)

Assuming equal concentrations of conjugate base to acid, which one of the following mixture is suitable for making a buffer solution with an optimum pH of 4.6 - 4.8.

CH₃COOH / CH₃COONa

$$K_a = 1.8 * 10^{-5}$$

b) NH₃ / NH₄Cl c) NaOCl / HOCl $K_a = 5.6 * 10^{-10}$ $K_a = 3.2 * 10^{-8}$

NaNO₂ / HNO₂

 $K_a^a = 4.5 * 10^{-4}$

Consider the carboxylic acids, (acids that contain the general formula –COOH group): ethanoic acid, (CH₃COOH) and chloroethanoic acid, (CH₃CICOOH).

From the equation:

$$\Delta G^{o} = \Delta H^{o} - T\Delta S^{o}$$

We see that the contributions to the (ΔG^o) term are the enthalpy term (ΔH^o) and a temperature time entropy term $(T\Delta S^o)$. These contributions are listed below for the two acids at 298 K.

<u>Acid</u>
CH ₃ COOH
CH ₂ ClCOOH

$$\Delta H^{o} \text{ (mol dm}^{-3}\text{)}$$

- 0.57
- 4.7

- a) Calculate ΔG° for the ionization of these two acids at 25 °C.
 - b) Calculate the acid ionization constant, K_a of chloroethanoic acid at 25 °C. Recall:

$$\Delta G^{\circ} = -RT \ln K$$

- Which is the dominant term (ΔH° or $T\Delta S^{\circ}$) in determining the value of ΔG° , (and hence K_a) of the acid?
- What processes contribute to the ΔH° in the ionization of these acids? (Consider the ionization of the acid as a Bronsted-Lowry acid base reaction; ie, what bonds need to be broken and what bonds need to be formed.)
- 15. 50.0 cm³ of 0.10 moldm⁻³ nitrous acid, HNO₂, was titrated with of 0.10 moldm⁻³ KOH solution. After 25.0 cm³ KOH solution, what will be the pH in the titration flask? $(K_a = 4.50 *10^{-4})$

(Answer: 2.41)

18. In the reaction: $C_6H_5COOH + F^{-1} \leftarrow C_6H_5COO^{-1} + HF$ $K_a (C_6H_5COOH) = 6.50 \times 10^{-5}, K_a (HF) = 3.50 \times 10^{-4}$ Explain if the products or the reactants will be favoured at equilibrium.

9. Which statements is true about solutions with pH of 2.0 and 4.0.

- a) The $[H^+]$ when pH = 2.0 is the 100 times that when pH = 4.0.
- b) The $[H^+]$ when pH = 4.0 is the 100 times that when pH = 2.0.
- c) The $[H^+]$ when pH = 4.0 is the twice that when pH = 2.0.
- d) The $[H^+]$ when pH = 2.0 is the twice that when pH = 4.0.

An aqueous solution of a weak monoprotic acid ($K_a = 1.0 * 10^{-5}$) exhibits a pH = 3. What is the concentration of the acid.

(a) 0.1M

(b) 0.01M

(c) 0.001M

(d) $1 * 10^{-6}$ M

Which one of the following species can function both as an acid and a base under the Bronsted-Lowry definition:

a) HS-

b) S²⁻

c) NH₄⁺

d) Al³⁺

The pK_a values of ethanoic acid CH₃COOH and trichloroethanoic acid, CH₂ClCOOH, are 5.0 and 1.0 respectively. What is the value of the ratio of the dissociation constants (trichloroethanoic acid / ethanoic acid)

a) 0.2

b) 5

c) 5000

d) 10000

QUIZ: ACID - BASE

- 1) Which of HNO₃ or HNO₂ is a stronger acid. Explain.
- 2) Why is HOBr as weaker acid than HOC1?
- 3) Which is the stronger base: F or Cl-? How do you know?
- 4) Calculate the pH of an aqueous solution of 0.55 mol dm⁻³ formic acid HCOOH and 0.63mol dm⁻³ sodium formate HCOONa. THe pK_a for formic acid is 3.14.
- 5) At normal body temperature 37 °C, K_w has a the value 2.38 * 10^{-14} . Calculate the pH of a neutral ageous solution in the body.

(Answer: pH = 6.81)

- 6) The [OH⁻] in a 0.0250 solution of HI at 25°C is:
 - a) $2.5 * 10^{-12} M$
 - b) 4.00 * 10⁻¹² M
 - c) $2.50 * 10^{-2} M$
 - d) 1.60 * 10⁻²M
- 7) The pH of an aquous solution is 3.52. The $[H^+]$ is:
 - a) $5.2 * 10^{-3}$
 - b) $3.0 * 10^3$
 - c) $4.7 * 10^{-4}$
 - d) 3.0 * 10⁻⁴
- 4) The acid ionization constant K_a for $HSO_3^- = 6.2 * 10^{-8}$. The base ionization constant, K_b for SO_3^{-2} is:
 - a) $1.7 *10^{-2}$
 - b) 2.50 *10⁻⁴
 - c) 3.12 *10⁻⁸
 - d) 1.60 * 10⁻⁷
- 5) Formic acid HCOOH, a monoprotic acid was formerly obtained by distillation of red ants.
 - At 25°C, K_a for HCOOH = 1.7 * 10⁻⁴. For a 2.32 solution HCOOH, calculate:
 - a) pH of solution
 - b) % Ionization of the solution.
- 6) Calculate the $[H^{+1}]$ of a 0.10 moldm⁻³ solution of a weak base pyridinium chloride, $C_5H_5NHCl^-$. The K_b for pyridine $(C_5H_5N) = 3.12 \times 10^{-6}$.

REVIEW QUESTIONS: ACID - BASE TEST

 H_3O^+

- 1) Write the conjugate acid base pair for the following
 - a) $Fe(H_2O)_6^{3+} + H_2O = Fe(H_2O)_5(OH)_1^{2+}$
 - b) $Ti(H_2O)_4^{4+} + H_2O = Ti(H_2O)_3(OH)_3^{3+} + H_3O^{4+}$
 - c) $C_2H_5NH_2$ + H_2O \longrightarrow $C_2H_5NH_3^+$ + OH^-
- 2) Place the following in increasing acid strength:
 - a) HBrO, HBrO₂, HBrO₃
 - b) HClO₂, HBrO₂, HIO₂
 - c) H₃AsO₃, H₃AsO₄
- 3) What are the hydronium ion and hydroxide ion concentrations in a 0.050 moldm⁻³ aqueous solution if hydrogen chloride.
- 4) a) What will be the pH of an aqueous solution containing 0.040 moldm⁻³ NaOH?
 - b) 0.10 mol dm⁻³ solution of barium hydroxide.
 - c) 0.033 mol dm⁻³ solution of calcium hydroxide, Ca(OH)₂
- 5) What is the hydronium ion concentration of a solution with a pH of 2.50.
- 6) If the hydronium ion concentration $[H_3O^+] = 1.44*10^{-3}$ mol dm⁻³, what is the pOH?
- 7) If the pOH = 7.41 what is the $[H_3O^+]$?
- 8) If the pH = 0.34, what is the [OH-]?
- 9) If the pOH = 5.52, what is the $[H^{+}]$?
- 10) Acetylsalicylic acid, (asprin), is a weak monoprotic acid which can be abbreviated as Hasp. A $0.10~\text{mol}~\text{dm}^{-3}$ solution of the acid has a pH of 2.24. Calculate the acid ionization concentration constant, K_a for acetylsalicylic acid.
- 11) Ascorbic acid, (Vitamin C), is a weak monoprotic acid which can be a abbreviated as HAsc. It has an ionization constant of 8.0 * 10⁻³, calculate the pH of a 0.100 mol dm⁻³ solution.
- 12) A new drug obtained from seeds of a strange Colombian plant was found to be a weak organic base. A $0.100 \text{ mol dm}^{-3}$ solution in H_2O of this drug has a pH of 10.8. What is the K_b of the drug?
- 13) Caffeine is a weak base that is related to NH₃. For the purposes of this example we can abbreviate its formula to CafN. It has a base ionization constant of 4.4*10⁻⁴. Calculate the pH of a 0.70 mol dm⁻³ solution.
- 14) What is the pH of 0.22 moldm⁻³ solution of formic, HCOOH, which has a pK_a = 3.42.
- 15) What is the pH of a weak base, diethyl amine $(C_2H_5)_2NH$, 0.226 mol dm⁻³ solution has a pK_a = 2.62.
- 16) A 0.32 mol dm⁻³ solution of chlorous acid, $HClO_2$ has a K_a of 1.22*10⁻⁴. What is the percent ionization of $HClO_2$.

$$HNO_2 + H_2O \longrightarrow H_3O^+ + NO_2^-$$
 $K_a = 5.15 * 10^4$ $NaNO_2 \longrightarrow Na^+ + NO_2^-$

- 18) What is the:
 - a) pH a 1.0 mol dm⁻³ solution.
 - b) pH in NH₃ and 0.10 mol dm⁻³ in NH₄NO₃ $K_b(NH_3) = 1.8 * 10^{-5}$
- 19) What is the pH of a solution, what is the % ionization of 0.10 moldm⁻³ HF in
 - a) H₂O
 - b) In the presences of 1.0 mol dm⁻³ aqueous solution of NaF.

$$K_{a}(HF) = 7.22 * 10^{-2}$$

- 20) Calculate the [OH⁻], pH, % ionization of a solution of 0.10 moldm⁻³ NH₃ K_b=1.8*10⁻⁵.
- 21) Calculate the hydrogen ion concentration, and the pH of a 0.220 mol dm⁻³ solution of vitamin C, (ascorbic acid), with a $K_a = 7.95 \times 10^{-5}$ at 25 °C.
- 22) A solution of hydrofluoric acid contains 2.00 g of HF per dm³ and has a pH of 2.22. What is the acid ionization constant for HF?
- 23) The formation of products is strongly favoured in this acid-base system:

$$HX + Y^{-1} \rightleftharpoons HY + X^{-1}$$

- a) Identify the bases competing for protons.
- b) Which base is stronger?
- c) Which is the weaker acid HX or HY?
- d) Does the K_a for this system have a large or small value?
- e) How is the equilibrium affected by the addition of the soluble salt NaY?

TEST: ACID BASE

- 1) Lactic acid (2-hydroxypropanoic acid), C₆H₁₂O₃, is a weak monoprotic acid. It is found in sour milk and in the blood after vigorous exercise.
 - a) Write the equilibrium expression for the dissociation of this acid and calculate the $[H_3O^+]$ for 0.12 mol dm⁻³ solution of lactic acid. (Ka (lactic acid =
 - b) Find the %ionization of a 0.12 mol dm⁻³ solution of lactic acid.
 - c) Koumiss, a fermented beverage made from mare's milk contains 12.2 g of lactic acid in 25 cm³ of water. Calculate the volume of 0.15 mol dm⁻³ NaOH that would be needed to neutralise the lactic acid.

The value of the pK of propanoic acid, C₂H₅COOH, is 4.87. What is the value of K₂? Calculate the pH of a 0.240 moldm⁻³ aqueous solution of propanoic acid.

9.60g of C₂H₂COONa is dissolved in 150 cm³ of 0.24 moldm⁻³ propanoic acid. What will be the resulting pH of the solution. State any approximation you have made in obtaining the answer.

 $MM(C_3H_5COONa) = 96 \text{ g mol}^{-1}, : n = 0.100 \text{ mol}, : c = n/V = 0.10/0.15 = 0.667 \text{ mol dm}^{-3}$ Explain how the solution in (c) can act as a buffer solution if small amounts of acid or alkali are added.

- 3) A 0.10 mol dm⁻³ solution of which of the following acids will have the greater [H⁺]?
 - $K_a = 1.3 * 10^{-4}$ a) HNO₂
 - b) H₂SO₃
 - c) H₃PO₄
 - $K_a = 1.3 * 10^{-2}$ $K_a = 7.7 * 10^{-3}$ $K_a = 1.7 * 10^{-10}$ d) H₂SiO₃
- 4) Only one of the following substances CANNOT function as a Lewis acid or Lewis base. Identify that substance on the basis of its structure.
 - a) NH_4^+
- b) NH₂-
- c) NH₃
- d) BF₃
- e) OH-
- 5) A student determined the concentration of a solution of hydrochloric acid by an acid-base titration. When a 45.0 cm³ sample of the acid was titrated to a phenolphthalein endpoint, 36.0 cm³ of 0.15 mol dm⁻³ KOH was required. What was the molarity of the HCl solution?
 - a) 0.30
- b) 0.24
- c) 0.12
- d) 0.06
- 6) A solution is prepared by adding 0.25 mol of CH₃COOH of solution. The pH of this solution is 2.67 and the % ionization 0.848 %. What will happen to the pH and the % ionization of this solution as it is diluted with H₂O to a volume of 2.0 dm³.
 - a) The pH will increase, the % ionization it increase.
 - b) The pH will decrease, the % ionization it increase.
 - c) The pH will increase, the % ionization it decrease.
 - d) The pH will decrease, the % ionization it decrease.
 - 7) Which of the following solutes at a concentration of 0.1M will produce an acidic solution?
 - I) NH₄Cl
- II) CH₃COONa
- III) $Fe_2(SO_4)_3$

- a) I only
- b) II only
- c) I and II only
- d) I, II, III