Review Problems: Halogenoalkanes, R-X

1. Predict whether the following mechanism will be S_N1 or S_N2 , state your reasons.

- 2. $S_{\rm N}1$ reactions show $1^{\rm st}$ order kinetics. Explain what this statement means
- 3. What choices for X and Y would *most* favour the following reaction:

$$R_3C-X \xrightarrow{X^-} R_3C^+ \xrightarrow{Y^-} R_3C-Y$$

- 4. The treatment of D-2-bromobutane with NaOH results in the production of a compound with L-configuration. The reaction has most likely taken place through which mechanism: S_N1 or S_N2 . Justify your answer.
- 5. Would the following reactants use S_N1 or S_N2 as their mechanism in a reaction? $(CH_3)_3CX + NaOH_{(aq)} \rightarrow$

Justify your answer, and complete the mechanism for the reaction, giving the name of the product.

- 6. What are the conditions required for turning $CH_3X \rightarrow CH_3OH$, and would the reaction occur via the mechanism S_N1 or S_N2 ?
- 7. State the anion and, if necessary, medium required for converting the following reactants to the following products:
 - a) $C_2H_5Br \rightarrow C_2H_5OC_2H_5$
 - b) $C_2H_5CN \rightarrow C_2H_5COOH$
 - c) $C_2H_5Br \rightarrow C_2H_6$
 - d) $C_2H_5Br \rightarrow C_2H_5NH_2$
- 8. What are the mechanisms, rate determining steps, and products of the following reactions?

a)
$$C \longrightarrow C \longrightarrow C \longrightarrow Br \xrightarrow{NaOH_{(aq)}} C$$

$$C \longrightarrow C \longrightarrow C$$

9. Why is a nucleophilic attack on Br not possible?

Answers

- 1) $1^{\circ} :: S_{N}2$
- 2) : Slow step indicates only 1 molecule
- 3) $X = I^{-}, Y = CN^{-}$
- **4)** S_N2
- **5)** $3^{\circ} :: S_{N}1$
- 6) Dilute, cold, aqueous OH, non-polar solvent
- 7) a) ${}^{-}OC_2H_5$ in a alcoholic solvent
- b) CN⁻ in dilute aqueous acidic, H⁺/ H₂O, medium.
- c) Reduction using LiAlH₄
- d) Ammonia in alcoholic medium
- 8) (a) $S_N 1$, 2,2 dimethyl propanol,
- (b) Via either S_N1 or S_N2 since it is secondary, product: propan-2-ol
- 9) Since lone pair on the halogen also participates in the delocalization of the benzene, thus C- X bond is stronger, also electron density on the carbon is increase, therefore, the electrophilic carbon is less likely to be attacked by the nucleophilic.