Review Questions: pH and pOH

1. Calculate the pH and pOH of lake water which was found to have $[H^+] = 3.2 \times 10^{-5} \text{ mol/L}$

Ans
$$pH = 4.49$$
, & $pOH = 9.51$

2. The pH of a soil sample is 8.3. What is the $[H^+]$ and $[OH^+]$ of the sample?

Ans
$$[H^+]$$
 = 5.0 x 10⁻⁹ mol/L $[OH^-]$ = 2.0 x 10⁻⁶ mol/L

3. What is the pH of a sodium hydroxide, a strong base, solution that has a concentration of 0.0026 mol/L?

Ans
$$pH = 11$$

- 4. Calculate [H⁺], and [OH⁻] for the following:
 - a) pOH = 9.561
 - **b)** pH = 3.176

- Ans $[H^+] = 3.64 \times 10^{-5} \text{ mol/L}$ Ans $[OH^-] = 2.75 \times 10^{-10} \text{ mol/L}$
- Ans $[H^+] = 6.67 \times 10^{-4} \text{ mol/L}$ Ans $[OH^-] = 1.50 \times 10^{-11} \text{ mol/L}$
- 1. Calculate pH and pOH for the follwing:
 - a) $[H^+] = 8.52 \times 10 \text{ mol/L}$

Ans pH = 9.07, & pOH = 4.93

b) $[OH^{-}] = 9.50 \times 10 \text{ mol/L}$

Ans pH = 10.9, & pOH = 3.10

Kw, [H+], and [OH-] Questions

- 1. Calculate [H⁺], and [OH⁻] for each of the following solutions:
 - a) 0.001 mol/L HCl, a strong acid
- Ans $[H^+] = 1.0 \times 10^{-3} \text{ mol/L}$ $[OH^-] = 1.0 \times 10^{-11} \text{ mol/L}$
- b) 4.0 mol/L NaOH, a strong base
- Ans $[H^+] = 2.5 \times 10^{-15} \text{ mol/L}$ $[OH^-] = 4.0 \text{ mol/L}$
- c) 6.00 x 10⁻³ mol/L Ca(OH)₂, a strong base
- Ans $[H^+] = 8.3 \times 10^{-13} \text{ mol/L}$ $[OH^-] = 1.2 \times 10^{-2} \text{ mol/L}$
- d) $2.5 \times 10^{-4} \text{ mol/L HNO}_3$, a strong acid
- Ans $[H^+] = 2.5 \times 10^{-4} \text{ mol/L}$ $[OH^-] = 4.0 \times 10^{-11} \text{ mol/L}$

K_a & K_b Questions

1. The value of Ka for $H_2S \le H^+ + HS^-$ is 1.0 x 10^{-7} . What is the value of $[H^+]$ in a 0.050 mol/L solution of HS is a weak acid.

Ans
$$[H^+] = 7.1 \times 10^{-5} \text{ mol/L}$$

2. The value of Ka for $H_2O_2 <==> H^+ = HO_2^-$ is 2.4 x10⁻¹². What is the pH of a 0.20 mol/L solution of H_2O_2 ? H_2O_2 is a weak acid.

Ans
$$pH = 6.2$$

3. Kb for NH₃, a weak base, is 1.8 x10⁻⁵. Calculate the [H⁺], [OH⁻], pH, and pOH of a 0.0200 mol/L solution.

Ans
$$[H^{+}] = 1.67 \times 10^{-11} \text{ mol/L}$$

 $[OH^{-}] = 6.00 \times 10^{-4} \text{mol/L}$
 $pH = 10.8$
 $pOH = 3.22$

4. Ka for HNO_2 , a weak aci, is 5.1×10^{-4} . What is the $[H^+]$, $[OH^-]$, pH, and pOH of a 0.400 mol/L HNO_2 solution?

Ans
$$[H^+] = 1.43 \text{ x} 10^{-2} \text{ mol/L}$$

 $[OH^-] = 6.99 \text{ x} 10^{-13} \text{ mol/L}$
 $pH = 1.84$
 $pOH = 12.2$

5. Calculate Ka for a 0.100 mol/L solution of formic acid, HCHO₂, a weak acid, if the pH is 2.38

Ans
$$Ka = 1.8 \times 10^{-4}$$

6. When butter turns rancid, its foul odour is mostly butyric acid, a weak acid. A 0.0100 mol/L solution of butyric acid has a pH of 3.40. Using Hbu and Bu⁻, claculate the Ka of Butyric acid.

Ans
$$Ka = 1.7 \times 10^{-5}$$

7. Nicotinic acid, $HC_2H_4NO_2$, is a B vitamin. It is also a weak acid with $Ka = 1.4 \times 10^{-5}$. What is the $[H^+]$ and the pH of a 0.100 mol/L solution?

Ans
$$[H^+] = 1.8 \times 10^{-3} \text{ mol/L}$$

pH = 2.9

Conjugate Acid and Base Pairs

- 1. Write the conjugate acid for each of the following:
 a) NO₂
 b) HCO₃
 H2CO₃
 - c) HPO_4^{-2} d) OH H_2O e) H_2SO_4 $H_3SO_4^{+}$
 - f) CH_3NH_2 $CH_3NH_3^+$
- 2. Write the conjugate base for each of the following: **Ans**
 - a) HF
 b) HCO₃c) NH₃
 d) N₂H₅+
 e) HPO₄-2

 EF

 CO₃-2

 NH₂N₂H₄
 PO₄-3
 - f) $(CH_3)_2NH_2^+$ (CH₃)₂NH