Equilibrium Review ## **Quantitative Review:** The following reactions occur at 500 K. Arrange them in order of increasing tendency to proceed to completion (i.e. least to greatest tendency): a. $2 \text{ NOCl} \leftrightarrow 2 \text{ NO} + \text{Cl}_2$ $K_c = 1.7 * 10^{-2}$ $$\begin{array}{lll} a. & 2 \; NOC1 \leftrightarrow 2 \; NO + Cl_2 & K_c = 1.7 \; * \; 10^{-2} \\ b. & 2 \; SO_3 \leftrightarrow 2 \; SO_2 + O_2 & K_c = 1.3 \; * \; 10^{-5} \\ c. & 2 \; NO_2 \leftrightarrow 2 \; NO + O_2 & K_c = 5.9 \; * \; 10^{-5} \end{array}$$ (Answer: $$b < c < a$$) The equilibrium constant for the reaction: $$Ni_{(s)} + 4CO_{(g)} \leftrightarrow Ni(CO)_{4(g)}$$ Is $5.0 * 10^4$ at 25°C. What is the value of the equilibrium constant for the following reaction: $$Ni(CO)_{4(g)} \leftrightarrow Ni_{(s)} + 4CO_{(g)}$$ (Answer: $$K_c = \frac{1}{K_c} = \frac{1}{5 * 10^4} = 2 * 10^{-5}$$) For the following reactions the equilibrium constants are defined: a. $$A + 2 B \leftrightarrow C$$ K_1 b. $C \leftrightarrow D + E$ K_2 c. $$A + 2 B \leftrightarrow D + E$$ K_c The final equilibrium constant is given by what expression? (Answer: $$K_c = K_1 * K_2$$) Carbon tetrachloride reacts at high temperatures with oxygen to produce two toxic gases: phosgene, COCl₂ and chlorine, Cl₂: $$CCl_{4(g)} + \frac{1}{2}O_{2(g)} \leftrightarrow COCl_{2(g)} + Cl_{2(g)}$$ $K_c = 4.4 * 10^9$ Calculate the equilibrium constant for the following reaction: $$2\; CCl_{4\;(g)} + O_{2\;(g)} \longleftrightarrow 2\; COCl_{2\;(g)} + 2\; Cl_{2\;(g)}$$ $$2 \,\, H_2S_{\,\, (g)} \,{\longleftrightarrow} \, 2 \,\, H_{2 \,\, (g)} \,{+} \,\, S_{2 \,\, (g)}$$ On analysis was found to contain 1.0 mol of H_2S , 4.0 mol of H_2 , and 0.80 mol of S_2 in a 4.0 dm³ vessel. Calculate the equilibrium constant for this reaction. (Answer: 3.2 mol dm⁻³) 6) An aqueous solution is made by dissolving 1.00 mol of AgNO₃ and 1.00 mol of FeSO₄ in water and making up to 1.00 dm3: $$Ag^{+}_{~(aq)}+Fe^{2+}_{~(aq)} \mathop{\longleftrightarrow} Fe^{3+}_{~(aq)}+Ag_{~(s)}$$ When the equilibrium was established the following concentrations were obtained: $$[Ag^{+}] = [Fe^{2+}] = 0.44 \text{ mol dm}^{-3}$$ $[Fe^{3+}] = 0.56 \text{ mol dm}^{-3}$ Find the equilibrium constant. (Answer: 2.89 mol⁻¹ dm³) For the equilibrium: $$2\ P_{(g)} + Q_{(g)} \mathop{\longleftrightarrow} 2\ R_{(g)}$$ Kc is numerically equal to 6.0. Into a $1.00~\rm{dm}^3$ flask are introduced $3.0~\rm{mol}$ of P, $3.0~\rm{mol}$ of Q, and $3.0~\rm{mol}$ of R. - a) State the units in which K_c is expressed. - b) Is the mixture at equilibrium? - c) If not, what must the volume of the flask be in order for such a mixture to exist in equilibrium at the temperature for which K_c was given? (Answer: a) M⁻¹; b) 0.33; c) $$K_c = 6 = \frac{(\frac{3}{V})^2}{(\frac{3}{V})^2(\frac{3}{V})} \rightarrow V = 18.0 \text{ dm}^3$$) 8) 2.50 mol of NOCl was placed in a 2.50 dm³ reaction vessel at 400°C. After equilibrium was established, it was found that 28% of NOCl has dissociated according to the following equation: $$2 \text{ NOCl }_{(g)} \leftrightarrow 2 \text{NO }_{(g)} + \text{Cl}_{2 (g)}$$ Calculate the equilibrium constant for the reaction. 9) The following reaction was allowed to come to equilibrium: $$A_{(g)} + 2 B_{(g)} \leftrightarrow C_{(g)}$$ The initial amounts of reactants placed into a $5.00~\text{dm}^3$ container were 1.0~mol of A and 1.8~mol of B. After the reaction reached equilibrium, 1.0~mol of B was found. Calculate the value of K_c for this reaction. 10) Consider the reaction: $$N_{2(g)} + O_{2(g)} \leftrightarrow 2 \text{ NO}_{(g)}$$ Here the equilibrium constant is 0.10 at 2000° C. Starting with initial concentrations of 0.040 mol dm⁻³ of N_2 and 0.040 mol dm⁻³ of O_2 , calculate the equilibrium constant concentration of NO. 11) 4.21 moles of S₂Cl₄ are introduced into a 2.0 dm³ vessel where the following reaction occurs: $$S_2Cl_{4(g)} \leftrightarrow 2 SCl_{2(g)}$$ It is allowed to come to equilibrium, and 1.25 moles of S_2Cl_4 are found in the container. Calculate the equilibrium constant for the reaction. 12) The following question refers to the Haber process for the synthesis of ammonia. The equation which represents the reaction is given below: $$N_{2(g)} + 3 H_{2(g)} \leftrightarrow 2 NH_{3(g)}$$ $\Delta H^{\circ} = -92 \text{ KJ mol}^{-1}$ a) Give one source each of nitrogen and hydrogen for this process. (Answer: Air, water or natural gas) ## COM - b) Write the expression for the equilibrium constant. $\textbf{(Answer:} \ K_p = \frac{P^2{}_{NH^3}}{P_{N_2}*P^3{}_{H_2}} \textbf{)}$ - c) What is the relationship between K_c and K_p for this reaction? (Answer: $K_p = K_c(RT)^{-2}$) - d) If the pressure is measured in kPa, what will be the units of K_p? (Answer: kPa⁻²) - e) State and explain the effect on the equilibrium constant, and its numerical value, if: - 1. Pressure is increased? (Answer: Shift to the right but K_c is constant) - 2. Temperature is increased? (Answer: Shift to the left and K_c will decrease) - f) The numerical value of the equilibrium constant, K_c , is $6.0 * 10^{-2}$ mol⁻² dm⁶ at 500°C. The following concentrations were determined in a mixture: $$[NH_3] = 1.0 * 10^{-3} \text{ mol dm}^{-3}$$ $[N_2] = 1.0 * 10^{-5} \text{ mol dm}^{-3}$ $[H_2] = 2.0 * 10^{-2} \text{ mol dm}^{-3}$ - 1. Is the reaction at equilibrium? (Answer: No) - 2. Predict the direction that the system will shift to reach equilibrium. (Answer: Left)