ACIDS AND BASES: K_a and K_b PROBLEMS - 1. Lactic acid is a monoprotic acid, $C_3H_5O_3H$. A 3.5 M solution is 4.8% ionized. Determine the K_a value for lactic acid. - 2. A certain weak acid, HA is 1.5% ionized in a 0.25 M solution of the acid. What is the value of K_a for this acid? - 3. The pH of a 2.5 M weak monoprotic acid, HA solution is 3.50. What is the K_a value for this acid? - 4. 0.25 mole formic acid, HCOOH, is dissolved in enough water to make one liter of solution. The pH of that solution is 2.19. What is the K_a of formic acid? - 5. Calculate the pH of a 0.022 M hypochlorous acid, HOCl, solution, $K_a = 3.2 \times 10^{-8}$. - 6. What is the percent ionization of 0.036 M benzoic acid, C_6H_5COOH , given $K_a = 1.42 \times 10^{-4}$. - 7. Calculate the percent ionization of 0.020 M CH₃COOH. $K_a = 1.8 \times 10^{-5}$ - 8. A 1.02 M HF solution is only 2.6 percent ionized. What is the value of K_a for HF? - 9. Phenoxide ion, $C_6H_5O^-$ is a weak base with $K_b = 7.7 \times 10^{-5}$. Calculate the pH of a 0.25 M solution of $C_6H_5O^-$. - 10. Ammonia, NH₃, has a base ionization constant, $K_b = 1.8 \times 10^{-5}$. Calculate the pH of a 0.25 M solution of NH₃. - 11. The pH of a 1.2 M C₂H₅NH₂, ethylamine solution is 12.41. Calculate the K_b value for ethylamine. - 12. The pOH of 1.5 M methylamine, CH₃NH₂, solution is 1.59. What is the K_b value for methylamine? - 13. Given the K_a for HOCN is 3.3 x 10^{-4} , what is K_b for OCN-? - 14. The ionization constant, K_a , for hyprobromous acid, HOBr, is 2.0×10^{-9} . What is the value of the conjugate base ionization constant, K_b , for OBr ion? - 15. A 0.1 M solution of barbituric acid is buffered with 0.1 M of sodium barbiturate in 1.0 L of acid. Calculate the pH for this solution. $(K_a = 1.0 \times 10^{-4})$ - 16. Write an equation to show the reaction between methylamine, CH₃NH₂, and boron triflouride, BF₃. Identify the Lewis acid and Lewis base and explain your choice. - 17. Which of the following could act as Lewis acids but not as Bronsted acids? - a) SO₃ b) HSO₃ - c) BF₃ d) SnCl₄ - e)SeF₄ - f)NH₃ - g)CH₃COOH - 18. Codeine is a cough suppressant extracted from crude opium, it is a weak base, with a pK_a of 4.76. What will be the pH of a 0.022 mol dm⁻³ solution of codeine. - 19. Hydrazine, N_2H_4 has been used as a rocket fuel. Like ammonia, NH_3 , it is a weak base. A 0.15 mol dm⁻³ solution has a pH of 10.25. Calculate the K_b and pK_b for hydrazine and determine the pK_a of its conjugate base. - 20. Ethylamine has a strong pungent odour similar to ammonia. Like ammonia it is a Bronsted base. A 0.100 mol dm⁻³ solution has a pH of 11.86. Calculate K_b and pK_b of ethylamine, and the pK_a of the conjugate acid $CH_3CH_2NH_3^{+1}$.