HYDROLYSIS OF IONS

The anion (-) and/or the cation (+) of some salts react with water to change the 1:1 ratio of H⁺ ions and OH-ions. This reaction is called **HYDROLYSIS**. The net result is a solution which is either acidic or basic.

Salts made from strong acids and strong bases

For example the salt NaCl NaOH_(aq) + HCl_(aq) \longrightarrow NaCl_(aq) + H₂O(l) The Na⁺ comes from the base NaOH and the Cl⁻ comes from the acid HCl.

Anions of salts formed by the addition of a strong acid and a strong base will NOT hydrolyze. In the above example the anion is Cl⁻ and is a weak conjugate base, therefore it is too weak a base to pull H⁺ ions from H₂O.

Cations of salts formed by the addition of a strong acid and a strong base will NOT hydrolyze. The cation Na⁺ is a weak conjugate acid, therefore it is too weak an acid to remove OH⁻ ions from H₂O. Metallic cations form Group IA or IIA, except Be, do not hydrolyze.

A solution of a salt formed by a strong acid and a strong base will be neutral because:

(Neither the cation or the anion hydrolyzes, .: the solution has a pH of 7)

Because Be²⁺ is such a tiny dense ion it has enough concentration of positive charge to pull OH⁻ ions from H₂O and leave H⁺ ions in a solution. Metallic ions, (e.g. Fe⁺³, Al⁺³), from groups other than IA and IIA act in a similar manner, producing acidic solutions.

Salts made from the addition of strong acids and weak bases. II)

For example the salt NH₄Cl

$$NH_{3(g)} + HCl_{(g)}$$
 $-NH_4Cl_{(s)}$

The cation NH₄ comes from NH₃ which is a weak base and therefore the NH₄ must be a relatively strong conjugate acid. The NH₄ ion will thus donate a proton to H₂O easily in solution to form H₃O⁺ and therefore an acidic solution.

A solution of a salt formed by a strong acid and a weak base will be acidic because of

(Because the cation hydrolyzes to produce H_3O^{+1} , .: pH < 7)

Ш Salts made from the addition of weak acids and strong base.

For example the salt: CH₃COONa:

$$NaOH_{(aq)} + CH_3COOH_{(aq)} \longrightarrow CH_3COONa_{(aq)} + H_2O_{(l)}$$

The anion CH₃COO comes from the weak acid CH₃COOH and therefore the anion must be a relatively strong conjugate base. The CH₃COO⁻ ion will pull protons away from water to produce OH⁻ ions in solution and therefore a basic solution.

A solution of a salt is formed by a weak acid and a strong base will be basic because of hydrolysis of the anion to produce OH-

(The anion hydrolyzes to produce OH^{-1} , .: pH > 7)

IV) Salts of weak acids and weak bases

Both anion and cation hydrolyze, the pH will depend on the extent of the hydrolysis.

Example: NH_4CH_3COO : $K_a = 1.8 \times 10^{-5}$ for CH_3COOH , $K_b = 1.8 \times 10^{-5}$

Example: NH₄CN: $K_a = 4.0 \times 10^{-10}$ for HCN, $K_b = 1.8 \times 10^{-5}$.: pH = ?