Elimination Reaction:

When a multiple bond is formed between two neighboring carbon atoms and a small molecule is eliminated from the neighbouring groups that were originally attached to these atoms.

Bimolecular Elimination, E2 Reaction:

- The E2 reaction has a bimolecular, one step mechanism.
 - \circ Closely resembles the S_N 2 mechanism.
 - As with S_N 2 reactions, the E2 reaction occurs with primary halogenoalkanes.
 - o Its rate law thus follows the form:
 - $Rate = k[R-X]^{1}[Base^{-}]^{1}$
- In E2 mechanisms, a nucleophile acting as a base donates a pair of electrons to the β-Hydrogen attached to the β-Carbon atom. At the same time, a C=C double bond is formed while the halide ion is expelled.
- The elimination reactions (both E1 and E2) require a hot, concentrated base such as OH.
 - \circ This indicates the reaction has a higher $E_{A.}$
 - The following is an E2 reaction mechanism between isopropyl bromide and the basic ethoxide ion

REACTION:

$$C_2H_4O^- + CH_3CHBrCH_3 \longrightarrow CH_2 = CHCH_3 + C_2H_4OH + Br^-$$

MECHANISM:

The basic ethoxide ion begins to remove a proton from the β carbon using its electron pair to form a bond to it. At the same time, the electron pair of the β C—H bond begins to move in to become the π bond of a double bond and the bromine begins to depart with the electrons that bonded it to the α carbon.

Transition state

Partial bonds now exist between the oxygen and the β hydrogen and between the α carbon and the bromine. The carbon–carbon bond is developing double bond character.

$$H$$
 $C = C$ $CH_3 + C_2H_5 = \ddot{O}H + : \ddot{B_F}$:

Now the double bond of the alkene is fully formed and the alkene has a trigonal planar geometry at each carbon atom. The other products are a molecule of ethanol and a bromide ion.