Markscheme

May 2016

Chemistry

Higher level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

General Marking Instructions

Assistant Examiners (AEs) will be contacted by their team leader (TL) through RM ${ }^{\text {TM }}$ Assessor, by e-mail or telephone - if through $R M^{\text {TM }}$ Assessor or by e mail, please reply to confirm that you have downloaded the markscheme from IBIS. The purpose of this initial contact is to allow AEs to raise any queries they have regarding the markscheme and its interpretation. AEs should contact their team leader through RM $^{\text {TM }}$ Assessor or by e-mail at any time if they have any problems/queries regarding marking. For any queries regarding the use of $R M^{\top M}$ Assessor, please contact emarking@ibo.org.

If you have any queries on administration please contact:
Rachel Bengough
Subject Operations
IB Assessment Centre
Peterson House
Malthouse Avenue
Cardiff Gate
Cardiff CF23 8GL
GREAT BRITAIN
Tel \quad +(44) 2920547777
Fax: $\quad+(44) 2920547778$
E-mail: rachel.bengough@ibo.org

Subject Details: Chemistry HL Paper 3 Markscheme

Mark Allocation

Candidates are required to answer ALL questions in Section A [15 marks] and all questions from ONE option in Section B [30 marks]. Maximum total $=$ [45 marks].

1. Each row in the "Question" column relates to the smallest subpart of the question.
2. The maximum mark for each question subpart is indicated in the "Total" column.
3. Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
4. A question subpart may have more marking points than the total allows. This will be indicated by "max" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
5. An alternative word is indicated in the "Answers" column by a slash (/). Either word can be accepted.
6. An alternative answer is indicated in the "Answers" column by "OR". Either answer can be accepted.
7. An alternative markscheme is indicated in the "Answers" column under heading ALTERNATIVE 1 etc. Either alternative can be accepted.
8. Words inside chevrons «» in the "Answers" column are not necessary to gain the mark.
9. Words that are underlined are essential for the mark.
10. The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by OWTTE (or words to that effect) in the "Notes" column.
12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then follow through marks should be awarded. When marking, indicate this by adding ECF (error carried forward) on the script. "ECF acceptable" will be displayed in the "Notes" column.
14. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the "Notes" column.
15. If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
16. If a question asks for an equation for a reaction, a balanced symbol equation is usually expected, do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

Section A

Question			Answers	Notes	Total
1.	a		ozone：yes because it absorbs IR \checkmark oxygen：no because it does not absorb IR \checkmark		2
	b	i	Any value in the range： 1300-1500	（It is in fact 1403 using the same measurement technique as that used to get the data in the table）．	1
	b	ii	CCl_{4} is symmetrical／dipoles of $\mathrm{C}-\mathrm{Cl}$ bonds cancel out OR fluorine／F more electronegative 〈than chlorine／Cl》 OR $\mathrm{C}-\mathrm{F}$ bond more polar 〈than $\mathrm{C}-\mathrm{Cl}$ bond 〉 \downarrow 《vector»sum of bond polarities in $\mathrm{CCl}_{3} \mathrm{~F}$ non－zero／greater than that in CCl_{4} OR dipoles of 〈three〉 $\mathrm{C}-\mathrm{Cl}$ bonds do not cancel the dipole of $\mathrm{C}-\mathrm{F}$ bond \checkmark	Accept suitable diagrams．	2
	b	iii	GWP increases as IR intensity increases \checkmark	Accept converse statements．	1
	b	iv	no relationship and CO_{2} and $\mathrm{CCl}_{4} / \mathrm{CF}_{4}$ are non－polar／have zero dipole moment（but）have very different integrated IR intensities	Accept a plot or sketch with a comment that＂changes along x－axis produce random changes along y－axis＂．	1
	b	v	«data from table such as integrated IR and GWP indicate that they» contribute significantly to global warming persistent in atmosphere cause ozone depletion development 〈of refrigerants» inadvertently caused problems		2 max

Question			Answers	Notes	Total
2.	a		carefully dissolve pellets／handle concentrated solution as corrosive／ reaction exothermic \checkmark pour／add 〈the concentrated solution〉 to a $\left\langle 1.00 \mathrm{dm}^{3}\right\rangle$ volumetric flask \checkmark volumetric flask has low uncertainty in measurement \checkmark fill up to line／mark／ $1 \mathrm{dm}^{3}$ with 〈dionized／distilled» water when at room temperature OR fill up to line／mark／1 dm^{3} with 〈dionized／distilled» water mixing the solution ＜homogeneously〉 \downarrow		2 max
	b	i	blue to green／yellow \checkmark		1
	b	ii	equivalence point has been exceeded／too much acid has been added \checkmark calculated concentration increased OR uncertainty increased		2
	c		temperature of NaOH solution changed during experiment OR intensity of colour difficult to detect \checkmark	Accept any valid hypothesis．	1

Section B

Option A－Materials

Question			Answers	Notes	Total
3.	a		$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{l})+3 \mathrm{CO}_{2}(\mathrm{~g}) \checkmark$		1
	b		```Fe}\mp@subsup{\mp@code{O}}{3}{ paramagnetic and unpaired electrons present so magnetic moments do not cancel out } Al2O diamagnetic and electrons are all paired so magnetic moments cancel out }```	Award［1］for＂ $\mathrm{Fe}_{2} \mathrm{O}_{3}$ paramagnetic and $\mathrm{Al}_{2} \mathrm{O}_{3}$ diamagnetic＂．	2
	C		$\begin{aligned} & n(\mathrm{e})=\frac{2.00 \times 10^{6}}{96500}=20.7\langle\mathrm{~mol}\rangle \\ & \text { OR } \\ & n(\mathrm{Al})=\frac{1}{3} \mathrm{n}(\mathrm{e})=6.91\langle\mathrm{~mol}\rangle \\ & m(\mathrm{Al})=6.91 \times 26.98=186\langle\mathrm{~g}\rangle \end{aligned}$	Award［2］for correct final answer．	2
	d	i	collisions between electrons and positive ions／metal atoms／metal lattice \checkmark		1
	d	ii	metal II is a superconductor \checkmark passing electrons 〈slightly〉deform lattice／displace positive ions and couple／form Cooper pairs／condense with other electrons \downarrow energy propagates along the lattice in wave－like manner／as phonons \checkmark Cooper pair／electron condensate moves through lattice freely OR phonons are 〈perfectly〉 elastic／cause no energy loss \checkmark		3 max

（Question 3 continued）

Question			Answers	Notes	
	e	i			

4．	a	possible toxicity 〈of small（airborne）particles〉 OR unknown health effects OR immune system／allergy concerns OR uncertain impact on environment \checkmark		
b	EITHER pores／cavities／channels／holes＜in zeolites〉 have specific shape／size \checkmark only reactants that fit inside go through／are activated／can react \checkmark OR zeolites have cage－like structure／are porous \checkmark only reactants with appropriate size／geometry fit inside and go through／are activated／can react \checkmark	$\mathbf{1}$		

（Question 4 continued）

| Question | | Answers | Total |
| :--- | :--- | :--- | :--- | :--- |
| c | Catalyst：
 iron／Fe
 OR
 iron＜0〉＜penta＞carbonyl／Fe $(\mathrm{CO})_{5} \checkmark$
 Conditions：
 high temperature／ $900-1600^{\circ} \mathrm{C}$
 and
 high pressure $/ 10-100 \mathrm{~atm} \checkmark$ | $\mathbf{2}$ | |

6.	a		«CN group〉 makes molecule polar \checkmark alignment／orientation of molecules can be controlled by electric field		2
	b	i		Continuation bonds are necessary for the mark．	1
	b	ii	H bonds form between chains＜from NH of one chain to CO of the next》 \checkmark		1

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 7. | a | plasticizer molecules fit between chains
 OR
 increase space between chains \checkmark
 weaken intermolecular forces \checkmark | $\mathbf{2}$ | |
| | b | does not degrade 〈so large volume in landfill〉 \checkmark
 concerns about resource waste \checkmark
 incineration produces dioxins/toxic compounds \checkmark | $\mathbf{1 ~ m a x ~}$ | |

Option B — Biochemistry

Question			Answers	Notes	Total
9.	a	i	alkenyl \checkmark	Accept alkene．	1
	a	ii	fused ring structure OR three 6－membered rings and a 5－membered ring OR four－ring 〈steroidal〉 backbone \checkmark		1
	b		medical uses of steroids 〈under physician supervision» OR detection of banned substances has／can be improved OR understanding the health hazards is improved	Accept any medicalized specific use．	1

10.	a		pH 1.0	pH 6.0	pH 11.0	Charges must be shown in structure for mark． Penalize repeated mistakes once．	
							3

(Question 10 continued)

11.	\mathbf{a}		$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \checkmark$		1
	\mathbf{b}		$n\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\left\langle=\frac{15.0}{180.18}\right\rangle=0.0833\langle\mathrm{~mol}\rangle \checkmark$		
〈energy $=0.0833 \times 2803 \Rightarrow 233\langle\mathrm{~kJ}\rangle \checkmark$	Award [2] for correct final answer.				

(Question 11 continued)

Question		Answers	Notes	Total
12.	a		Curves must be labeled and should not cross given curve. Penalize one mark if curves cross.	2
	b	$\log \frac{\left(3.70 \times 10^{-3}\right)}{\left(2.60 \times 10^{-3}\right)}=0.153$ $\langle 4.76+0.153 \Rightarrow 4.91 \checkmark$	Accept 4.9. Award [2] for correct final answer. Accept other methods of calculation.	2

13.	a	A and D have few polar/hydroxyl/OH groups <but C has many of those» OR A and D have hydrocarbon/six-membered carbon rings <but C has heterocyclic/five-membered ring〉 \checkmark OR A and D have long hydrocarbon chains \checkmark	Accept other valid similarities and differences.		$\mathbf{1}$

Question			Answers	Notes	Total
14.	a		low CO_{2} level causes more oxygen to be bound to the heme \checkmark high pH causes more oxygen to be bound to the heme \checkmark low temperature more oxygen to be bound to the heme high organic phosphates／2，3－BPG／DPG which can bind to heme and increases affinity for oxygen CO decreases saturation／binds to active site／competitive inhibitor	Accept reverse statements for mark．	3 max
	b		contains two gamma units 〈instead of the two beta units found in adults〉 OR differs slightly in amino acid sequence «from the two beta units found in adults＞ less sensitive to inhibitors／2，3－BPG／DPG \checkmark receives O_{2} from 〈partly deoxygenated〉 blood so must work at low $\mathrm{pO}_{2} \checkmark$	Accept reverse statements for mark．	2 max

Option C - Energy

Question			Answers	Notes	Total
15.	a	i	2,2-dimethylbutane OR 2,3-dimethylbutane OR 3-methylpentane OR 2-methylpentane OR cyclohexane OR methylcyclopentane OR benzene \checkmark	Accept names or formulas.	1
	a	ii	increased branching OR tertiary free radicals are more stable OR higher octane rating \checkmark		1
	b	i	$\left\langle\frac{5470}{114.26}=\right\rangle 47.9\left\langle\mathrm{~kJ} \mathrm{~g}^{-1}\right\rangle \checkmark$		1

（Question 15 continued）

Question			Answers	Notes	Total
	b	ii	Advantage： ethanol does not produce particulates OR ethanol has high octane rating OR ethanol is renewable Disadvantage： 〈but〉 reduces efficiency 〈as ethanol has lower specific energy＞ OR ethanol is more volatile〈than octane or its isomers〉 OR land that could be used for food production used to produce crops for ethanol		2
	C		$\begin{aligned} & 2 \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \\ & \mathrm{OR} \\ & 3 \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{CO}(\mathrm{~g}) \downarrow \end{aligned}$		1

| 16． | a | Reagent：
 methanol／ $\mathrm{CH}_{3} \mathrm{OH}$
 OR
 ethanol／ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \checkmark$
 Catalyst：
 strong acid
 OR
 strong base \checkmark | Accept any strong acid such as sulfuric acid／ $\mathrm{H}_{2} \mathrm{SO}_{4}$. |
| :--- | :--- | :--- | :--- | :--- |
| Accept any strong base such as sodium hydroxide／NaOH． | | | |

（Question 16 continued）

17.	a		${ }_{90}^{232} \mathrm{Th}+{ }_{6}^{12} \mathrm{C} \rightarrow{ }_{96}^{240} \mathrm{Cm}+4{ }_{0}^{1} \mathrm{n} \checkmark$	Accept ${ }^{232} \mathrm{Th}+{ }^{12} \mathrm{C} \rightarrow{ }^{240} \mathrm{Cm}+4 \mathrm{n}$.	1
	b	i	$\left\langle\lambda=\frac{\ln 2}{7.038 \times 10^{8}}=\right\rangle 9.849 \times 10^{-10}\left\langle\right.$ years $^{-1} \checkmark$		1
	b	ii	〈3 half－lives，so〉 2.11×10^{9} 〈years〉 \downarrow		1
	b	iii	produces free radicals 《initiates chain reactions that can〉 damage DNA OR 《initiates chain reactions that can〉 damage cells OR 〈DNA damage causes〉 mutations／cancer／apoptosis／cell death／weakening of immune system	Accept other negative biochemical and／or medical effects．	2
	C	i	$\begin{aligned} & \begin{array}{l} \text { mass of helium-4 nucleus }=4 \times 1.66 \times 10^{-27}=6.64 \times 10^{-27}\langle\mathrm{~kg}\rangle \\ \boldsymbol{O} \boldsymbol{R} \\ \text { mass of nucleons }=2 \times 1.672622 \times 10^{-27}+2 \times 1.674927 \times 10^{-27}=6.695098 \times 10^{-27}\langle\mathrm{~kg}\rangle \\ \text { «mass defect } \left.=6.695098 \times 10^{-27}-6.64 \times 10^{-27}=\right\rangle 5.51 \times 10^{-29} / 0.06 \times 10^{-27} / \\ 6 \times 10^{-29}\langle\mathrm{~kg}\rangle \end{array} \\ & \hline \end{aligned}$	Award［2］for correct final answer．	2

(Question 17 continued)

| Question | | | Answers | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| c | ii | binding energy $=\frac{\Delta m \times c^{2}}{\text { nucleons }}=\frac{6 \times 10^{-29} \times\left(3.00 \times 10^{8}\right)^{2}}{4}$
 $=1 \times 10^{-12}\left\langle\mathrm{~kJ}\right.$ nucleon $\left.{ }^{-1}\right\rangle \checkmark$ | The use of 5.51×10^{-29} and 5.00×10^{-29}
 will respectively give 1.23×10^{-12} and
 1.13×10^{-12}. | |

| 18. | $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
 OR^{2}
 $\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq})$ and $\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \checkmark$
 increasing $\left[\mathrm{CO}_{2}\right]$ shifts equilibrium to right/increases $\left[\mathrm{H}^{+}\right] \checkmark$
 pH decreases \checkmark | Accept $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ instead of $\mathrm{CO}_{2}(\mathrm{aq})$.
 Do not award $\mathrm{M1}$ if states of $\mathrm{CO} \mathrm{O}_{2}$ not
 shown or incorrect. |
| :--- | :--- | :--- | :--- | :--- |

| 19. | | bond length changes/<asymmetric> stretching
 OR
 bond angle changes/bends \checkmark
 polarity/dipole moment changes \checkmark | Accept appropriate diagram. |
| :--- | :--- | :--- | :--- | :--- |

| 20. | a | Negative electrode (anode):
 $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \checkmark$
 Positive electrode (cathode):
 $\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \checkmark$ | 2ccept $\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g})+6 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. |
| :--- | :--- | :--- | :--- | :--- |

Question		Answers	Notes	Total
b	b	Advantage: produces continuous supply of electricity 〈on addition of more raw materials〉 OR does not need to be recharged OR less hazardous if broken or exposed to the environment OR weighs much less than lead-acid battery \checkmark Disadvantage: more expensive OR needs constant supply of fuel OR methanol/ethanol fuel cells difficult to use in cold weather OR methanol/ethanol fuel cells produce carbon dioxide OR storage/transport of gases/hydrogen a problem in hydrogen fuel cell OR potentially explosive/hydrogen is flammable \checkmark		2

（Question 21 continued）

Question		Answers	Notes	Total
b	large surface area 〈increases chance photon will be absorbed〉 \checkmark 〈dye allows〉 absorption of a wide range of wavelengths OR dye converts most／all absorbed photons into electrons \checkmark	$\mathbf{2}$		

Option D－Medicinal chemistry

Question			Answers	Notes	Total
22.	a		beta－lactam ring is strained OR ring breaks easily bonds covalently／interferes with the enzyme／transpeptidase that synthesizes the bacterium cell wall inhibits cross linking in bacteria cell walls OR bacteria burst 〈from high osmotic pressure〉 OR cell cannot reproduce \checkmark		3
	b		bacteria can become resistant pollute the environment 〈overuse in livestock〉 loss of useful bacteria weakening of the immune system／natural body resistance to diseases \checkmark	Any two for［1 max］．	1

Question			Answers	Notes	Total
	b		morphine has 〈two〉 hydroxyl 〈groups〉 and diamorphine／heroin has 〈two〉 ester〈groups〉 \downarrow morphine is more polar than diamorphine／heroin \checkmark morphine does not cross the blood－brain barrier as well as diamorphine／heroin morphine is better soluble in the blood plasma while diamorphine／heroin is better soluble in lipids \checkmark	Accept converse argument． Accept＂alcohol＂for＂hydroxyl＂．	3 max
	c		spectrum A is diamorphine because it has a 《strong》 peak at $1700-1750 \mathrm{~cm}^{-1}$ OR spectrum A is diamorphine because it has a C＝O／carbonyl（group）／ester \checkmark spectrum B is morphine because it has a 《strong broad» peak at $3200-3600 \mathrm{~cm}^{-1}$ OR spectrum B is morphine because it has a $-\mathrm{OH} /$ hydroxyl（group）\checkmark	Accept＂alcohol＂for＂hydroxyl＂．	2

| 24． | a | $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{MgCl}_{2}(\mathrm{aq})$
 OR
 $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \checkmark$ | 1 l |
| :--- | :--- | :--- | :--- | :--- |

(Question 25 continued)

Question		Answers	Notes	Total
b	b	${ }_{84}^{216} \mathrm{Po} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{82}^{212} \mathrm{~Pb}$ correct reactant \checkmark correct alpha particle \checkmark	Atomic numbers not required for mark. Accept a symbol.	2
c	\mathbf{c}	Advantage: selectively kills cancer cells \checkmark Cancer treatment: melanoma OR leukemia OR rectal OR breast OR ovarian OR prostate OR pancreatic OR cancers that spread around the body/produce metastases \checkmark	Accept skin cancer.	2

(Question 25 continued)

26.	a		ether \checkmark		1
	b		Number of signals: 3 «signals〉 \checkmark Relative integration: 6:4:1 \downarrow	Accept any correct ratio order.	2
	c	i	polarimeter \checkmark	Accept other alternative techniques such as "GC/HLPC/chromatography using a chiral column".	1

(Question 26 continued)

| c | ii | polarized light passed through sample \checkmark
 analyser/second polarizer detects whether plane of polarization rotated
 OR
 each enantiomer will rotate plane (of plane-)polarized light differently \checkmark | Accept explanation related to other
 alternative techniques such as GC/
 HLPC/chromatography using a chiral
 column. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

