Markscheme

May 2016

Chemistry

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Subject Details: Chemistry HL Paper 3 Markscheme

Mark Allocation

Candidates are required to answer ALL questions in Section A [15 marks] and all questions from ONE option in Section B [30 marks]. Maximum total $=$ [45 marks].

1. Each row in the "Question" column relates to the smallest subpart of the question.
2. The maximum mark for each question subpart is indicated in the "Total" column.
3. Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
4. A question subpart may have more marking points than the total allows. This will be indicated by "max" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
5. An alternative word is indicated in the "Answers" column by a slash (/). Either word can be accepted.
6. An alternative answer is indicated in the "Answers" column by "OR". Either answer can be accepted.
7. An alternative markscheme is indicated in the "Answers" column under heading ALTERNATIVE 1 etc. Either alternative can be accepted.
8. Words inside chevrons «» in the "Answers" column are not necessary to gain the mark.
9. Words that are underlined are essential for the mark.
10. The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by OWTTE (or words to that effect) in the "Notes" column.
12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then follow through marks should be awarded. When marking, indicate this by adding ECF (error carried forward) on the script.
14. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the "Notes" column.
15. If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
16. If a question asks for an equation for a reaction, a balanced symbol equation is usually expected. Do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

Section A

Question			Answers	Notes	Total
1.	a		Ozone: yes because it absorbs IR/is IR active \checkmark Oxygen: no because it does not absorb IR/is IR inactive \checkmark	Award [1 max] for stating "ozone/ O_{3} is a greenhouse gas but oxygen $/ \mathrm{O}_{2}$ is not". Award [1 max] for stating "ozone $/ O_{3}$ absorbs IR/is IR active but oxygen $/ \mathrm{O}_{2}$ does not/is IR inactive". Accept "oxygen $/ \mathrm{O}_{2}$ is not a greenhouse gas because it absorbs UV".	2
1.	b	i	Any value or range within the range: 1300-1500 «km mol ${ }^{-1} » \downarrow$	(It is in fact 1403 «kmmol ${ }^{-1}$ » using the same measurement technique as that used to get the data in the table).	1

Question			Answers	Notes	Total
1.	b	ii	CCl_{4} is symmetrical/dipoles of $\mathrm{C}-\mathrm{Cl}$ bonds cancel out OR $\mathrm{C}-\mathrm{F}$ bond more polar «than $\mathrm{C}-\mathrm{Cl}$ bond» «vector» sum of bond polarities in $\mathrm{CCl}_{3} \mathrm{~F}$ non-zero/greater OR dipoles of «three» $\mathrm{C}-\mathrm{Cl}$ bonds do not cancel the dipole of the $\mathrm{C}-\mathrm{F}$ bond \checkmark	Accept suitable diagrams with dipoles represented as vectors illustrating M1 and/or M2. Accept "fluorine/F more electronegative «than chlorine/Cl»" for M1. Accept converse statements throughout. Accept "dipoles will not cancel out in CCl_{3} F" for M2.	2
1.	b	iii	GWP increases as IR intensity increases \checkmark	Accept "GWP proportional to IR intensity". Accept "there is a positive correlation/ relationship". Accept converse statement.	1
1.	b	iv	no relationship $\boldsymbol{A N D} \mathrm{CO}_{2}$ and $\mathrm{CCl}_{4} / \mathrm{CF}_{4}$ are non-polar/have zero dipole moment «but» have very different integrated IR intensities OR no relationship $\operatorname{AND} \mathrm{CCl}_{2} \mathrm{~F}_{2}$ and CClF_{3} have «almost» the same dipole moment but have very different integrated IR intensities OR no relationship $A N D$ sometimes there is a positive relationship between the two «variables» and sometimes there is a negative/no relationship between them OR no relationship $A N D$ as F atoms are «gradually» added to CCl_{4}, integrated IR intensity always increases while dipole moment increases and then decreases \checkmark	Accept a plot or sketch with a comment that "changes along x-axis produce random changes along y-axis". Accept "yes there is a relationship, as there is still a weak overall «statistical» positive correlation". Accept "dipole" for "dipole moment".	1

Question		Answers	Notes	Total	
1.	b	\mathbf{v}	«data from table such as integrated IR and GWP indicate that they» contribute significantly to global warming/enhanced greenhouse effect \checkmark cause ozone depletion OR chlorine/Cl released when exposed to ultra-violet/UV «radiation» \checkmark	Do not just accept "contributes to global warming" without an indication that the effect is large. Do not accept just "contributes significantly to limate change". Award [1 max] for "persistent in atmosphere". Accept a consequence of global warming for M2.	2

| 2. | a | Key Procedural Steps:
 use volumetric flask \checkmark
 mix the solution
 fill up to line/mark/«bottom of» meniscus/1 dm^{3} «with deionized/distilled
 water» \checkmark
 Key Technique Aspects:
 use balance that reads to two decimal places/use analytical balance/use
 balance of high precision \checkmark
 mix pellets in beaker with deionized/distilled water «and stir with glass rod
 to dissolve»
 use a funnel «and glass-rod» to avoid loss of solution \checkmark
 need to rinse «the beaker, funnel and glass rod» and transfer washings to
 the «volumetric» flask \checkmark | Two marks may be awarded from two
 different categories or from within one
 category. |
| :--- | :--- | :--- | :--- | :--- |
| Safety Precautions:
 NaOH corrosive/reacts with water exothermically \checkmark
 keep NaOH in dessicator \checkmark
 let the solution cool \checkmark | Do not accept "use of a funnel to transfer the
 solid". | 2 max | |
| 2. | bblue to green/yellow \checkmark | Do not accept "keep volumetric flask in cold
 water/ice". | |

Question		Answers	Notes	Total	
2.	b	ii	equivalence point has been exceeded OR greater volume of/too much acid has been added \checkmark «calculated» concentration increased \checkmark	Accept "end-point" for "equivalence point". 2.	c

Section B

Option A - Materials

| Question | | Answers | Notes | Total | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3. | d | i | collisions between electrons AND positive ions/cations/metal atoms/metal
 lattice \checkmark | Accept "irregularities/non-uniformity in metal
 lattice «caused by impurities» but do not
 accept just "impurities present". Do not
 accept "attractions" for "collisions". | 1 |

Question		Answers	Notes	Total
4.	a	possible toxicity «of small airborne particles» OR unknown health effects OR small particle size «and large surface area» may increase reaction rate to dangerous levels OR immune system/allergy concerns OR uncertain impact on environment	Accept specific health effect (eg. may cause cancer/effect on respiratory system, etc).	1
4.	b	pores/cavities/channels/holes/cage-like structures «in zeolites» have specific shape/size \checkmark only reactants «with appropriate size/geometry» fit inside/go through/are activated/can react		2
4.	c	Catalyst: iron/Fe OR iron«0» «penta» carbonyl/Fe (CO) ${ }_{5} \downarrow$ Conditions: high temperature/any value or range within the range $900-1600^{\circ} \mathrm{C}$ AND high pressure/any value or range within the range 10-100 atm \checkmark	Accept "cobalt-molybdenum/Co-Mo/CoMo". Accept high pressures expressed in $\mathrm{kPa} / \mathrm{Pa}$.	2

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| $\mathbf{5 .}$ | | ceramics have «giant» ionic/covalent/ionic AND covalent structures \checkmark
 metals contain lattice of positive ions/cations in sea of delocalized
 electrons \checkmark | Accept [1 max] for "ionic/covalent/ionic and
 covalent bonds in ceramics AND metallic
 bonds in metals".
 Accept suitable diagram for M2. | $\mathbf{2}$ |

6.	a		«CN group makes» molecule polar alignment/orientation of molecules can be controlled by electric field OR allows molecules to align in an electric field/when a voltage is applied \checkmark	Accept "CN is polar".	2
6.	b	i		Continuation bonds are necessary for the mark but brackets and n can be ignored. If more than one repeating unit is drawn, do not award the mark.	1
6.	b	ii	H bonds «form between chains from NH of one chain to CO of the next» \checkmark		1

Question			Answers	Notes	Total
7.	a	«plasticizer molecules» fit between chains OR «plasticizer molecules» prevent chains from forming crystalline regions OR «plasticizer molecules» keeps strands/chains/molecules separated OR «plasticizer molecules» increase space/volume between chains \checkmark weakens intermolecular/dipole-dipole/London/dispersion/instantaneous induced dipole-induced dipole/van der Waals/vdW forces \checkmark	Do not accept "«plasticizer molecules» lower density".		
7.	b	does not degrade/biodegrade/break down «easily» \checkmark occupies more space in landfills \checkmark incineration produces dioxins/hydrochloric acid/HCl «which can contribute to acid rain» \downarrow	Accept "plasticizer added to PVC can be a health hazard". Accept "combustion" for "incineration". Do not accept simply "toxic compounds"for M3.	1 max	

8.	a	$\begin{aligned} & \mathrm{Fe}^{3+}+\cdot \mathrm{O}_{2}^{-} \rightarrow \mathrm{Fe}^{2+}+\mathrm{O}_{2} \checkmark \\ & \mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}^{3+}+\cdot \mathrm{OH}+\mathrm{OH}^{-} \downarrow \end{aligned}$	Award [1] for the net equation $\mathrm{H}_{2} \mathrm{O}_{2}+\cdot \mathrm{O}_{2}^{-} \rightarrow$ $\mathrm{HO} \cdot+\mathrm{OH}^{-}+\mathrm{O}_{2}$. Accept the hydroxyl and superoxide radicals represented without the radical symbols as long as there is consistent use of the radical symbol.	2
8.	b	$K_{s p}=\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{2}\right]^{2}$ OR $\begin{aligned} & {[\mathrm{OH}]=2\left[\mathrm{Zn}^{2+}\right] \checkmark} \\ & «\left[\mathrm{Zn}^{2+}\right]=\sqrt[3]{7.5 \times 10^{-18}}=» 2.0 \times 10^{-6} « \mathrm{moldm}^{-3} » \end{aligned}$	Award [2] for correct final answer. Award [1 max] for 5.5×10^{-9} OR 6.0×10^{-9} «moldm ${ }^{-3}$ 》.	2

Option B — Biochemistry

| Question | | Answers | Notes | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 9. | a | \mathbf{i} | alkenyl/ethanylylidene \checkmark | $\mathbf{1}$ |
| 9. | \mathbf{a} | ii | four-ring «steroidal» backbone
 OR
 fused ring structure
 OR
 three 6-membered rings AND a 5-membered ring \checkmark | Award [1] for a sketch of the steroidal
 backbone. |
| 9. | b | medical uses of steroids «under physician supervision»
 OR
 detection of banned substances can be improved \checkmark | Accept any specific medical use.
 Accept answers such as "their effects «either
 positive or negative» are better understood". | |

11.	a	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})+6 \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \checkmark$	Accept equations for anaerobic respiration, such as $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq}) \rightarrow 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}(\mathrm{aq})$. Ignore ATP if added as a product.	1
11.	b	$\begin{aligned} & n\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\left\langle=\frac{15.0}{180.18}\right\rangle=0.0833 \text { «mol» } \\ & \text { «energy }=0.0833 \times 2803=» 233 \text { «kJ» } \downarrow \end{aligned}$	Award [2] for correct final answer. Accept - 233 «kJ».	2

Question		Answers	Notes	Total
11.	c	Two advantages: renewable resource \checkmark broken down/digested by bacteria or other organisms within a relatively short time/quickly \checkmark reduce «volume of» plastic waste/landfill \downarrow reduce use of petrochemicals OR reduce use of fossil fuels as hydrocarbon source \checkmark degrade into non-toxic products Two disadvantages: require use of land «for crop production» increased use of fertilizers/pesticides «leading to pollution» OR eutrophication \checkmark might break down before end of use \checkmark release of methane/ $\mathrm{CH}_{4} /$ greenhouse gas «during degradation» \checkmark	Any two advantages for [2 max]. M2: reference must be made to time. Do not accept "biodegradable" (since stated in question). Ignore any mention of cost. Any two disadvantages for [2 max]. Ignore any mention of cost.	4 max

Question		Answers	Notes	Total
11.	d	 typical curve as shown in example above \checkmark	Accept any curve with a single maximum (not just bell-shaped). Ignore features such as pH values on a pH scale or a pH value at maximum (if given). Do not penalize if curve does not touch the x-axis.	1

Question		Answers	Notes	Total
12.	a		Curves must be labelled and should not cross given curve. Penalize one mark if one or both sketched curve(s) cross the given curve. Award [1 max] if curves are not labelled competitive or non-competitive OR are labelled the wrong way round.	2
12.	b	$\begin{aligned} & \log \frac{\left(3.70 \times 10^{-3}\right)}{\left(2.60 \times 10^{-3}\right)}=0.153 \\ & « \mathrm{pH}=4.76+0.153=» 4.91 \end{aligned}$	Award [2] for correct final answer. Accept other method of calculation.	2

13.	a	A and D have one/few polar/hydroxyl/OH groups «but C has many of those» OR A and D have hydrocarbon/six-membered «carbon» rings «but C has heterocyclic/five-membered ring» OR A and D have long hydrocarbon chains/consist of mainly non-polar components \checkmark	Accept other valid similarities or differences. Accept "hydroxy/alcohol" but not "hydroxide" for "hydroxyl".	1
13.	b	0.47 AND chlorophyll b \checkmark	Accept any R_{f} value in the range 0.44-0.50.	1

Question			Answers	Notes	Total
14.	a		low CO_{2} level causes more oxygen to be bound to the heme high pH causes more oxygen to be bound to the heme low temperature causes more oxygen to be bound to the heme \checkmark organic phosphates/2,3-BPG/DPG can decrease affinity for oxygen \checkmark CO decreases saturation/binds to active site/acts as a competitive inhibitor \checkmark	Accept reverse statements for mark. Award [2] if the effects of CO_{2} AND pH are discussed in combination.	3 max
14.	b		contains two gamma units «instead of the two beta units found in adults» OR differs in amino acid sequence «from the two beta units found in adults» less sensitive to inhibitors/2,3-BPG/DPG \checkmark receives O_{2} from «partly deoxygenated» blood so can work at low $\mathrm{pO}_{2} \checkmark$	Accept reverse statements for mark.	2 max

Option C - Energy

Question			Answers	Notes	Total
15.	a	i	2,2-dimethylbutane OR 2,3-dimethylbutane OR 3-methylpentane OR 2-methylpentane OR cyclohexane OR methylcyclopentane OR benzene \checkmark	Accept name or structural formula. Accept any mono or poly-substituted cycloalkane with a total of six carbon atoms.	
15.	a	ii	increased branching (for acyclic hydrocarbons)/aromatic/aromaticity (for benzene)/cyclic hydrocarbon OR tertiary radicals are more stable OR higher octane rating	Response in M1 must be consistent with molecule chosen in a (i).	1
15.	b	i	« $\frac{5470}{114.26}=» 47.9$ «kJ g ${ }^{-1} » \checkmark$		1

Question			Answers	Notes	Total
15.	b	ii	Advantage: ethanol does not produce particulates/has less incomplete combustion/CO/HCs/VOCs/is less polluting OR ethanol has high octane rating OR ethanol is renewable OR less environmental risks associated with spills for ethanol OR less carbon dioxide $/ \mathrm{CO}_{2}$ produced if renewable energy source used OR economic advantages for countries that cannot produce crude oil \checkmark Disadvantage: reduces efficiency/lowers specific energy/lowers energy density OR ethanol is more volatile/evaporates easily «than octane or its isomers» OR land that could be used for food production used to produce crops for ethanol OR biodiversity can be affected/loss of habitats «due to energy crop plantations» OR phosphorus/nitrogen used in production has negative environmental effects OR modification of current engines «may be required» if ethanol used	Accept any valid advantage and disadvantage. Ignore any mention of cost. Ignore any mention of NO_{x}. Accept "if the fuel blend consists of nearly pure ethanol, engine is difficult to start in cold weather". Accept for disadvantage any engine-related problem affected by ethanol use (eg. effect on fuel pumps, incorrect fuel quantity indicators, older cars may not be suitable for ethanol use, etc.).	2

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 15. | c | $2 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
 OR
 $3 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{CO}(\mathrm{g}) \checkmark$ | Accept a two-step process. | 1 |

16.	a		Reagent: methanol/ $\mathrm{CH}_{3} \mathrm{OH}$ OR ethanol/ $/ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \checkmark$ Catalyst: strong acid OR strong base \checkmark	Do not accept just "alcohol". Accept any strong acid such as sulfuric acid $/ \mathrm{H}_{2} \mathrm{SO}_{4}$. Accept any strong base such as sodium hydroxide/ NaOH .	2
16.	b		different solutions/statistical data can be compared/combined OR best ideas can be shared to arrive at global/local solutions OR acceleration of research OR discoveries become available to everyone OR improved confidence in validity of results «if multiple scientists/ research groups are involved» OR money/effort/time is not wasted duplicating work others have already done \checkmark	Do not accept scientists simply working together to share ideas - look for a little more detail. Accept other valid suggestions.	1

Question			Answers	Notes	Total
17.	a		${ }_{90}^{232} \mathrm{Th}+{ }_{6}^{12} \mathrm{C} \rightarrow{ }_{96}^{240} \mathrm{Cm}+4{ }_{0}^{1} \mathrm{n} \checkmark$	Accept ${ }^{232} \mathrm{Th}+{ }^{12} \mathrm{C} \rightarrow{ }^{240} \mathrm{Cm}+4 \mathrm{n}$. Accept " $4 n$ " for " 4011 " in any equation.	1
17.	b	i	$« \lambda=\frac{\ln 2}{7.038 \times 10^{8}}=» 9.849 \times 10^{-10} \text { «years }^{-1} » \checkmark$		1
17.	b	ii	«3 half-lives, so» 2.11×10^{9} «years» \downarrow	Accept any value within range 2.11-2.13 $\times 10^{9}$ «years».	1
17.	b	iii	produces radicals «initiates chain reactions that can» damage DNA/ionizes biologically important molecules OR «initiates chain reactions that can» damage cells OR «DNA damage causes» mutations/cancer/apoptosis/cell death/weakening of immune system \checkmark	Do not accept just "have long half-lives so can harm living organisms". Accept other negative biochemical and/or medical effects.	2
17.	c	i	```mass of helium-4 nucleus \(=4 \times 1.66 \times 10^{-27} / 6.64 \times 10^{-27}\) «kg» OR mass of nucleons \(=2 \times 1.672622 \times 10^{-27}+2 \times 1.674927 \times 10^{-27} / 6.695098 \times 10^{-27}\) «kg» «mass defect \(=6.695098 \times 10^{-27}-6.64 \times 10^{-27}=» 5.51 \times 10^{-29} / 0.06 \times 10^{-27} /\) \(6 \times 10^{-29}\) «kg» \(\downarrow\)```	Award [2] for correct final answer.	2
17.	c	ii	$\text { «binding energy }=\frac{\Delta m \times c^{2}}{\text { nucleons }}=\frac{6 \times 10^{-29} \times\left(3.00 \times 10^{8}\right)^{2}}{4 \times 1000} »=1 \times 10^{-15} \text { «kJ nucleon }{ }^{-1} » \checkmark$	The use of 5.51×10^{-29} and 5.00×10^{-29} will respectively give 1.24×10^{-15} and $1.13 \times$ $10^{-15} \mathrm{k} \mathrm{kJ} \mathrm{nucleon}^{-1} \mathrm{~m}$.	1

Question		Answers	Notes	Total
18.		$\begin{aligned} & \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \\ & O R \\ & \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq}) \text { AND } \mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \end{aligned}$ «increasing $\left[\mathrm{CO}_{2}\right]$ » shifts equilibrium/reaction to right \checkmark pH decreases \checkmark	Accept " $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ " for " $\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)$ ".	3

19.

bond length/C=O changes
$O R$
«asymmetric» stretching «of bonds»
$O R$
bond angle/OCO changes/bends \checkmark
polarity/dipole «moment» changes
$O R$

a dipole «moment» is created «when the molecule absorbs IR» \checkmark

20.	a	Negative electrode (anode): $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{e}^{-} \downarrow$ Positive electrode (cathode): $\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \downarrow$	Award [1 max] if correct half-equations are given but at the wrong electrodes. Accept e for e-. Accept any correct half-equation with fractional coefficients.	2

Question		Answers	Notes	Total
20.	\mathbf{b}	Advantage: produces continuous supply of electricity «on addition of more raw materials" OR does not need to be recharged OR less hazardous if broken/exposed to the environment OR weighs less for same energy output/has higher energy density/has higher specific energy than lead-acid battery \checkmark Disadvantage: emore» expensive OR needs constant supply of fuel OR methanol/ethanol fuel cells difficult to use in cold weather OR methanol/ethanol fuel cells produce carbon dioxide OR storage/transport of gases/hydrogen a problem in hydrogen fuel cell OR does not produce high current OR potentially explosive/hydrogen is flammable \checkmarkDo not accept "weighs less" without reference to energy output/power/capacity etc.		

| 21. | a | $n-$ type:
 «small amount of» As/Sb/P/group 15 element added AND «extra» electrons \checkmark
 p-type:
 «small amount of» Ga/In/B/group 13 element added AND «extra electron»
 holes \checkmark | Award [1 max] if only doping elements
 or only charge carriers are given.
 Accept "group 5/group 5A/group V" for
 "group 15".
 Accept "group 3/group 3A/group III" for
 "group 13". | $\mathbf{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 21. | b | large surface area «increases chance photon will be absorbed» \checkmark
 «dye allows» absorption of a wide range of wavelengths
 OR
 dye converts most/all absorbed photons into electrons \checkmark | | |

Option D - Medicinal chemistry

Question			Answers	Notes	Total
22.	a		ring is «sterically» strained OR angles of 90° instead of $109.5 / 109 / 120^{\circ}$ angles OR angles smaller than 109.5/109/120 $/$ /tetrahedral/trigonal planar/triangular planar angle ring breaks up/opens/reacts «easily» OR amide/amido group «in ring» is «highly» reactive binds to/reacts with/interferes with/inactivates transpeptidase/enzyme responsible for bacterial cell wall formation/cross-linking \checkmark	Do not accept "cell membrane" for "cell wall". Accept "bonds to" for "binds to" in M3.	3
22.	b		Any two for [1 max] from: leads to «bacterial» resistance «of antiobiotics» OR makes antibiotics less effective OR increased side effects due to larger dosages \checkmark proportion of resistant bacteria increases destroys useful/beneficial bacteria OR destroyed bacteria replaced by more harmful bacteria resistant bacteria pass on their resistance/mutation to next generation \checkmark damage to ecosystems \checkmark	Accept "superbugs such as MRSA develop" but superbug must be identified.	1 max

| 24. | a | $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{MgCl}_{2}(\mathrm{aq})$
 OR
 $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \checkmark$ | $\mathbf{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Question		Answers	Notes	
24.	b	$\begin{array}{l}\text { Award [1 max] for any similarity: } \\ \text { both compounds relieve symptoms of acid reflux/heartburn/indigestion } \\ \text { OR } \\ \text { both increase the stomach pH } \checkmark \\ \text { both cause diarrhoea } \checkmark \\ \text { Award [2 max] for any two differences: } \\ \text { omeprazole stops the production of acid/is a proton-pump inhibitor AND } \\ \text { magnesium hydroxide neutralizes the «excess» acid that is present } \checkmark \\ \text { omeprazole takes longer «than magnesium hydroxide» to provide relief } \checkmark \\ \text { omeprazole is used to treat ulcers while magnesium hydroxide is not } \checkmark \\ \text { omeprazole can prevent long term damage from overproduction of } \\ \text { acid } A N D \text { magnesium hydroxide does not } \\ \text { OR } \\ \text { omeprazole has a long term effect AND magnesium hydroxide } \\ \text { has a short-term effect «only» } \checkmark \\ \text { magnesium hydroxide affects ionic balance in the body AND omeprazole does } \\ \text { not } \checkmark\end{array}$	$\begin{array}{l}\text { Award [1 max] if two or three correct } \\ \text { points are given about one of the } \\ \text { compounds without addressing the } \\ \text { other compound. }\end{array}$	

| Question | | Answers | Notes |
| :--- | :--- | :--- | :--- | :--- |
| 25. | c | Advantage:
 selectively kills cancer cells/targets cancer cells only
 OR
 does not damage healthy cells \checkmark
 Cancer treatment:
 melanoma
 OR
 leukemia
 OR
 rectal
 OR
 breast
 OR
 ovarian
 OR
 prostate
 OR
 pancreatic
 OR
 cancers that spread around the body/produce metastasis/dispersed cancers w | Do not accept 'targets cancer".
 Reference must be made to "cells". |

Question		Answers	Notes	Total
25.	d	ALTERNATIVE 1: $\lambda «=\frac{\ln 2}{6.01} » \approx 0.115 《 h^{-1} » \checkmark$ $\text { «remaining mass }=5.80 \times 10^{-9} \times e^{-0.115 \times 24.04}=» 3.63 \times 10^{-10} « g » \downarrow$ ALTERNATIVE 2: $\begin{aligned} & \text { « } \frac{24.04}{6.01}=» 4 \text { «half-lives» } \checkmark \\ & \text { «5.80 } \times 10^{-9} \\ & 2^{4} \end{aligned} » 3.63 \times 10^{-10} \text { «g» }$	Award [2] for correct final answer.	2
25.	e	risk vs benefit «patient and environment» OR providing adequate information to patients about risks OR security concerns if nuclear radioactive material ended up with terrorists OR cultural resistance/superstition/lack of education OR «potential» exposure of health workers «to radioactivity» OR proper training «in radioactive hazards» not always given to workers OR proper disposal of radioactive materials \checkmark	Accept other valid ethical implications (note that risk of cancer to the patient is not an ethical issue, while risk of cancer to the health worker is). Do not accept "security concerns" alone - there must be some reference to an ethical implication.	1

Question			Answers	Notes	Total
26.	a		ether \checkmark	Do not accept " $\mathrm{C}-\mathrm{O}-\mathrm{C}$ ".	1
26.	b		Number of signals: 3 «signals» \checkmark Relative integration: 6:4:1 \checkmark	Accept any correct ratio order.	2
26.	c	i	polarimeter \checkmark	Accept other alternative techniques such as "GC/HLPC/chromatography using a chiral column". Do not accept just "polarizer".	1
26.	c	ii	«plane-»polarized light passed through sample \checkmark analyzer/second polarizer determines the angle of rotation of the plane of polarized light OR each enantiomer will rotate plane «of plane-»polarized light in opposite directions «by the same angle» \checkmark	Accept explanation related to other alternative techniques such as GC/ HLPC/chromatography using a chiral column. Award [2] for " $(+) / d$ rotates plane of polarization to the right AND (-)// rotates plane of polarization to the left".	2

