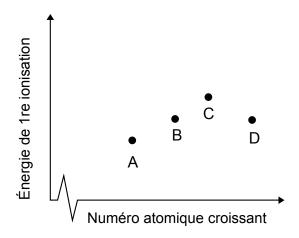


Chimie Niveau supérieur Épreuve 1

Jeudi 12 mai 2016 (matin)

1 heure


Instructions destinées aux candidats

- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.
- Le tableau périodique est inclus pour référence en page 2.
- Le nombre maximum de points pour cette épreuve d'examen est de [40 points].

	,	¢	¢	•		Le tableau de la classification périodique des éléments	u de เ	a class	ificati	on péri	odiqu	e des	élémei	nts	ţ	Ç	į	!
	-	N	n	4	ဂ	٥	_	∞	တ	2	=	12	<u>5</u>	4	ဌ	9	2	200
_	- ± ,,			Ž Z	Numero atomique		-											2 He 4,00
7	3 Li 6,94	4 Be 9,01		Masse	Masse atomique relative	relative							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
က	11 Na 22,99	12 Mg 24,31	I		-								13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,07	17 CI 35,45	18 Ar 39,95
4	19 K 39,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,90
5	37 Rb 85,47	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,96	43 Tc (98)	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,41	49 In 114,82	50 Sn 118,71	51 Sb 121,76	52 Te 127,60	53 I 126,90	54 Xe 131,29
9	55 Cs 132,91	56 Ba 137,33	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,84	75 Re 186,21	76 0s 190,23	77 Ir 192,22	78 Pt 195,08	79 Au 196,97	80 Hg 200,59	81 Tl 204,38	82 Pb 207,2	83 Bi 208,98	84 Po (209)	85 At (210)	86 Rn (222)
7	87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
			+	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm (145)	62 Sm 150,36	63 Eu 151,96	64 Gd 157,25	65 Tb 158,93	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,05	71 Lu 174,97	
			#	96 4	91 Pa	92 U	83 N	94 Pu	95 Am	96 Cm	97 BK	8 5	66 Es	100 Fm	101 Md	102 No	103	

- 1. Quelle équation représente une sublimation ?
 - A. $2Al(s) + 3I_2(g) \rightarrow 2AlI_3(s)$
 - B. $HgCl_2(s) \rightarrow HgCl_2(g)$
 - C. $I_2(g) \rightarrow I_2(s)$
 - D. $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$
- 2. Dans quel mélange NaOH est-il le réactif limitant ?
 - A. $0,20 \,\text{mol NaOH} + 0,10 \,\text{mol H}_2 \,\text{SO}_4$
 - B. $0,10 \text{ mol NaOH} + 0,10 \text{ mol H}_2SO_4$
 - C. $0,20 \text{ mol NaOH} + 0,10 \text{ mol HNO}_3$
 - D. 0,10 mol NaOH + 0,10 mol HNO₃
- 3. Pourquoi les gaz s'écartent-ils de la loi des gaz parfaits à des pressions élevées ?
 - A. Les molécules ont un volume fini.
 - B. Les forces de cohésion augmentent le volume par rapport au comportement idéal.
 - C. L'augmentation de la pression augmente la température du gaz.
 - D. Les collisions entre les molécules se produisent plus fréquemment lorsque la pression augmente.
- **4.** Quelle est la combinaison correcte pour l'isotope de chrome ${}_{24}^{53}$ Cr ?
 - A. 24 neutrons et 53 nucléons
 - B. 24 protons et 29 nucléons
 - C. 24 protons et 29 neutrons
 - D. 24 électrons et 53 neutrons

- **5.** Quelle est la configuration électronique correcte de l'ion séléniure, Se²⁻ ?
 - A. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4d^{10} 4p^4$
 - B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4d^{10} 4p^6$
 - C. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^4$
 - D. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6$
- **6.** Le diagramme montre les énergies de première ionisation de quatre éléments consécutifs dans le tableau périodique. Quel élément appartient au groupe 14 ?

- 7. Quel élément est un élément amphotère ?
 - A. Co
 - B. As
 - C. Cs
 - D. Es

8. Quelle tendance périodique est décrite correctement ?

	Tendance au niveau	En descendant dans le groupe (de haut en bas)	Le long d'une période (de gauche à droite)
A.	du rayon atomique	augmente	augmente
B.	du rayon ionique	diminue	augmente
C.	de l'énergie de première ionisation	diminue	diminue
D.	de l'électronégativité	diminue	augmente

- 9. Quel facteur n'affecte pas la couleur de l'ion complexe formé par un métal de transition particulier ?
 - A. L'état d'oxydation du métal
 - B. Le nombre de ligands dans le complexe
 - C. La nature des ligands dans le complexe
 - D. L'isotope du métal
- 10. Quelle proposition explique le mieux pourquoi les complexes de métaux de transition sont colorés ?
 - A. Lorsque les électrons retournent à des niveaux d'énergie inférieurs, une lumière d'une certaine couleur est émise et la couleur complémentaire est observée.
 - B. Lorsque les électrons retournent à des niveaux d'énergie inférieurs, une lumière d'une certaine couleur est émise, et le complexe apparaît donc de la même couleur.
 - C. Lorsque les électrons sont promus à des niveaux d'énergie supérieurs, une lumière d'une certaine couleur est absorbée et la couleur complémentaire est observée.
 - D. Lorsque les électrons sont promus à des niveaux d'énergie supérieurs, une lumière d'une certaine couleur est absorbée, et le complexe apparaît donc de la même couleur.
- **11.** Quelle espèce **ne** respecte **pas** la règle de l'octet ?
 - A. PCl₃
 - B. BF₄
 - C. SCl₄
 - D. NH₄⁺

- 12. Quel composé contient à la fois des liaisons ioniques et covalentes ?
 - A. SiH₄
 - B. NaNO₃
 - C. H₂CO
 - D. Na₂S
- 13. Parmi les options suivantes, lesquelles sont des forces de van der Waals?
 - I. Forces dipôle-dipôle
 - II. Liaisons hydrogène
 - III. Forces (de dispersion) de London
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III
- 14. Dans quel groupe les composés contiennent-ils tous les deux des électrons délocalisés ?
 - A. C_6H_{10} , C_5H_{10}
 - B. Na₂CO₃, NaOH
 - C. NaHCO₃, C₆H₆
 - D. NaHCO₃, C₆H₁₂
- **15.** Parmi les combinaisons suivantes, laquelle est correcte ?

	Atome	Nombre de domaines électroniques	Géométrie moléculaire	Hybridation
A.	C dans C ₂ H ₂	2	linéaire	sp
B.	C dans C ₂ H ₆	4	plane carrée	sp ³
C.	N dans NH ₃	3	pyramidale à base triangulaire	sp ³
D.	O dans H₂O	4	angulaire	sp ²

16. L'équation de la formation de l'éthyne est :

$$2C(s) + H_2(g) \rightarrow C_2H_2(g)$$

Quelle est la variation d'enthalpie, en kJ, accompagnant cette réaction ? Utilisez les données d'enthalpie de combustion fournies ci-dessous.

Réaction	ΔH [°] / kJ
$C(s) + O_2(g) \rightarrow CO_2(g)$	-394
$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$	-572
$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(l)$	-2602

A.
$$2 \times (-394) + \frac{1}{2}(-572) - \frac{1}{2}(-2602)$$

B.
$$2 \times (-394) + (-572) - (-2602)$$

C.
$$2 \times (-394) + \frac{1}{2}(-572) + \frac{1}{2}(-2602)$$

D.
$$2 \times (-394) + (-572) + (-2602)$$

17. Quelle équation représente l'enthalpie moyenne de liaison de la liaison Si-H pour SiH₄?

A.
$$SiH_4(g) \rightarrow SiH_3(g) + H(g)$$

B.
$$\frac{1}{4} \text{SiH}_4(g) \rightarrow \frac{1}{4} \text{Si}(g) + \text{H}(g)$$

$$C. \quad SiH_{_{4}}(g) \rightarrow SiH_{_{3}}(g) + \frac{1}{2}H_{_{2}}(g)$$

D.
$$SiH_4(g) \rightarrow Si(g) + 4H(g)$$

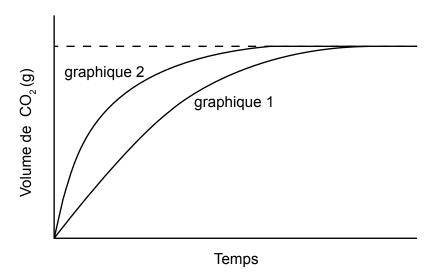
18. Quelle transition représente une enthalpie d'hydratation?

A.
$$2H_2O(l) \rightarrow H_3O^+(aq) + OH^-(aq)$$

B.
$$NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$$

C.
$$K^+(s) \rightarrow K^+(aq)$$

D.
$$K^+(g) \rightarrow K^+(aq)$$


19. Quels sont les signes pour les variations d'entropie associées à la réaction suivante ?

$$H_2O(g) \rightarrow H_2O(l)$$

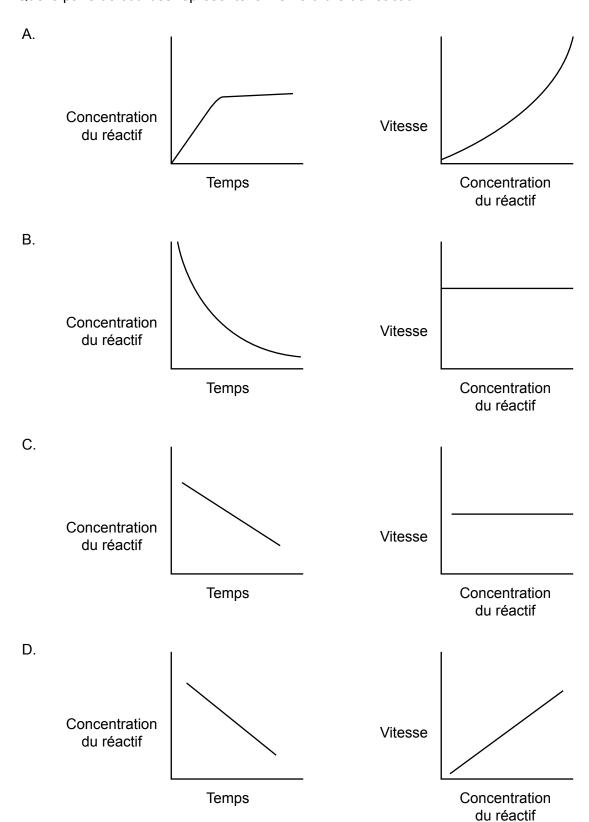
	$\Delta \mathcal{S}_{milieu}$ extérieur	$\Delta \mathcal{S}_{système}$
A.	+	_
B.	+	+
C.	_	_
D.	_	+

20. Le graphique 1 représente le volume de $CO_2(g)$ en fonction du temps pour la réaction de $CaCO_3(s)$ avec HCl(aq) à 1,00 mol dm⁻³. L'acide est le réactif limitant et il recouvre entièrement les morceaux de $CaCO_3(s)$.

Quel ensemble de conditions est le plus susceptible de fournir les données du graphique 2 lorsque la même masse de $CaCO_3(s)$ réagit avec le même volume de HCl(aq) à la même température ?

	Taille des morceaux	Concentration de l'acide / mol dm ⁻³
A.	plus gros	1,00
B.	plus petit	0,05
C.	plus petit	1,00
D.	plus gros	0,05

21. Les données du tableau montrent l'effet d'une modification des concentrations des réactifs sur la vitesse de la réaction suivante à 25 °C.


$$F_2(g) + 2ClO_2(g) \rightarrow 2FClO_2(g)$$

[F ₂ (g)] initiale / mol dm ⁻³	[ClO₂(g)] initiale / mol dm ⁻³	Vitesse initiale de la réaction / mol dm ⁻³ s ⁻¹
0,100	0,010	$1,20 \times 10^{-3}$
0,100	0,030	$3,60 \times 10^{-3}$
0,150	0,010	$1,80 \times 10^{-3}$

Quelle combinaison est correcte pour l'ordre de réaction par rapport à la concentration du fluor et l'ordre global de la réaction ?

	Ordre par rapport à [F₂(g)]	Ordre global
A.	2	1
B.	2	2
C.	1	1
D.	1	2

22. Quelle paire de courbes représente le même ordre de réaction ?

23. Lequel des termes de l'équation d'Arrhenius prend en compte l'orientation des molécules ?

$$k = Ae^{\frac{-E_a}{RT}}$$

- A. *A*
- B. *E*_a
- C. R
- D. *T*
- 24. Quel est l'effet d'une augmentation de température sur l'équilibre ?

$$ClNO_2(g) + NO(g) \rightleftharpoons ClNO(g) + NO_2(g)$$
 $\Delta H^{\circ} = -18.4 \text{ kJ}$

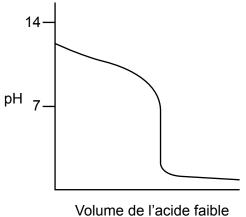
	Position de l'équilibre	K _c
A.	se déplace vers la gauche	diminue
B.	se déplace vers la gauche	aucun changement
C.	se déplace vers la droite	aucun changement
D.	se déplace vers la droite	augmente

25. Quelle combinaison est correcte pour un système isolé à l'équilibre ?

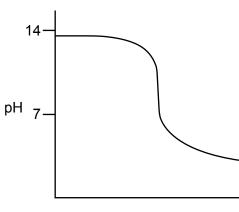
	Énergie libre de Gibbs	Entropie
A.	maximale	maximale
B.	maximale	minimale
C.	minimale	maximale
D.	minimale	minimale

26. Quelle option représente une paire acide-base conjuguée de Brønsted-Lowry?

$$CH_3COOH(aq) + H_2O(l) \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq)$$

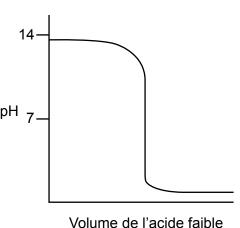

- A. CH_3COO^-/H_3O^+
- B. H₂O / CH₃COO⁻
- C. H_2O / H_3O^+
- D. CH₃COOH / H₂O
- **27.** On compare des solutions aqueuses d'un acide faible et d'un acide fort de concentration identique. Quelles propositions sont correctes ?
 - I. L'acide faible est moins dissocié que l'acide fort.
 - II. L'acide fort réagit avec un oxyde de métal, mais l'acide faible ne réagit pas.
 - III. L'acide fort possède une conductivité plus grande que l'acide faible.
 - A. I et II seulement
 - B. I et III seulement
 - C. II et III seulement
 - D. I, II et III
- **28.** Le schéma représente les liaisons dans le chlorure d'aluminium.

Quelle proposition est correcte?

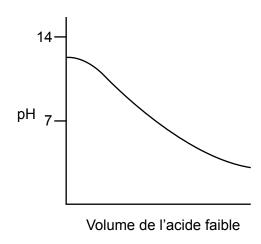

- A. Les atomes d'aluminium se comportent comme des acides de Lewis.
- B. Les atomes d'aluminium se comportent comme des bases de Lewis.
- C. Un atome d'aluminium est une base de Lewis et l'autre, un acide de Lewis.
- D. Un atome de chlore est une base de Lewis et l'autre, un acide de Lewis.

29. Quelle courbe de titrage est obtenue lorsqu'un acide faible est ajouté à une base forte ?

A.



B.



Volume de l'acide faible

C.

D.

- 30. En appliquant les règles de l'UICPA, quel est le nom de MnO₂ ?
 - A. Oxyde de magnésium(II)
 - B. Oxyde de manganèse(II)
 - C. Dioxyde de magnésium (oxyde de magnésium(IV))
 - Dioxyde de manganèse (oxyde de manganèse(IV)) D.
- 31. Quelle proposition est correcte pour une pile voltaïque, mais pas pour une cellule d'électrolyse ?
 - A. Un électrolyte est requis.
 - B. L'anode est l'électrode où se produit l'oxydation.
 - C. Les ions circulent dans l'électrolyte.
 - D. Les électrons se déplacent de l'électrode négative vers l'électrode positive.

32.	Quel composé forme à la fois de l'hydrogène et de l'oxygène aux électrodes lorsqu'une solution aqueuse concentrée est électrolysée ?
	Δ KI

- B. NaCl
- C. H₂SO₄
- D. AgNO₃
- **33.** L'électrolyse de $CuSO_4$ sous un courant d'intensité I, pendant un temps t, permet le dépôt de z mol de cuivre. Quelle quantité d'argent, en mol, se dépose par l'électrolyse de $AgNO_3$ sous un courant d'intensité $\frac{I}{2}$ pendant un temps 2t?
 - A. $\frac{z}{4}$
 - B. $\frac{z}{2}$
 - C. z
 - D. 2z
- 34. Quelle est la formule générale de la série des alcynes ?
 - A. C_nH_n
 - $\mathsf{B.} \quad \mathsf{C}_{n}\mathsf{H}_{2n-2}$
 - C. C_nH_{2n}
 - D. C_nH_{2n+2}
- **35.** Quelle proposition est correcte à propos de la réaction principale entre le 1-chloropropane, CH₃CH₂Cl, et une solution diluée d'hydroxyde de sodium, NaOH (aq) ?
 - A. L'équation de vitesse est d'ordre deux.
 - B. L'ion hydroxyde agit comme une base de Brønsted-Lowry.
 - C. La réaction se déroule en deux étapes distinctes.
 - D. Un des produits est l'eau.

36.	Quelle molécule peut être réduite par le borohydrure de sodium, NaBH ₄ , et oxydée par le
	dichromate de potassium acidifié et chaud ?

- A. CH₃CHOHCH₂CH₃
- B. (CH₃)₃CCHO
- C. (CH₃)₃COH
- D. (CH₃)₃CCOC(CH₃)₃

37. Quelle molécule contient un carbone chiral?

- A. CH₃CHOHCH₂CH₃
- B. (CH₃)₃CCHO
- C. (CH₃)₃COH
- D. $(CH_3)_3COC(CH_3)_3$
- **38.** Un cylindre gradué a été utilisé pour obtenir un volume connu d'un liquide. La lecture du volume a été effectuée au haut du ménisque et le liquide a été complètement versé dans un récipient. Ce procédé a ensuite été répété exactement de la même façon. Quelle proposition est correcte à propos de la procédure globale décrite et des volumes mesurés ?
 - A. Il y a une erreur systématique et les volumes mesurés sont exacts.
 - B. Il y a une erreur aléatoire et les volumes mesurés sont exacts.
 - C. Il y a une erreur aléatoire et les volumes mesurés sont inexacts.
 - D. Il y a une erreur systématique et les volumes mesurés sont inexacts.
- **39.** Quelle molécule a un indice de déficit en hydrogène (IDH) = 1?
 - A. C_6H_6
 - B. C_2Cl_2
 - C. C_4H_9N
 - D. C₂H₆O

- **40.** Quelle technique analytique est utilisée pour mesurer les longueurs de liaison dans des composés solides ?
 - A. La spectroscopie dans l'IR
 - B. La spectroscopie de masse
 - C. La spectroscopie de RMN
 - D. La cristallographie aux rayons X