

CHEMISTRY HIGHER LEVEL PAPER 1

Monday 19 May 2014 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [40 marks].

0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)	
	— 4·						
7		9 F 19.00	17 Cl 35.45	35 Br 79.90	53 I 126.90	85 At (210)	
9		8 O 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)	
w		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98	
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19	
က		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37	
				30 Zn 65.37	48 Cd 112.40	80 Hg 200.59	
ole				29 Cu 63.55	47 Ag 107.87	79 Au 196.97	
dic Tal				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09	
The Periodic Table				27 Co 58.93	45 Rh 102.91	77 Ir 192.22	
The				26 Fe 55.85	44 Ru 101.07	76 Os 190.21	
				25 Mn 54.94	43 Tc 98.91	75 Re 186.21	
	number	Element ve atomic mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85	
	Atomic number	Element Relative atomic mass		23 V 50.94	41 Nb 92.91	73 Ta 180.95	
	<u> </u>			22 Ti 47.90	40 Zr 91.22	72 Hf 178.49	
				21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)
2		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)
-	1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)

	T
71	103
Lu	Lr
174.97	(260)
70	102
Yb	No
173.04	(259)
69	101
Tm	Md
168.93	(258)
68 Er 167.26	100 Fm (257)
67 Ho 164.93	99 Es (254)
66	98
Dy	C f
162.50	(251)
65	97
Tb	Bk
158.92	(247)
64	96
Gd	Cm
157.25	(247)
63 Eu 151.96	95 Am (243)
62 Sm 150.35	94 Pu (242)
61	93
Pm	N p
146.92	(237)
60	92
Nd	U
144.24	238.03
59	91
Pr	Pa
140.91	231.04
58	90
Ce	Th
140.12	232.04
-!	- - -

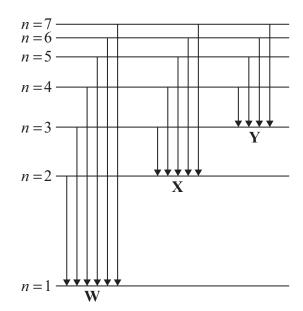
-3-

What is its empirical formula?

- A. C_6O
- B. C_6H_4O
- $C. C_6H_6O$
- D. $C_{12}H_8O_2$
- 2. Under which conditions does CH_4 have the same number of molecules as $100 \, \text{cm}^3$ of O_2 at $27 \, ^{\circ}\text{C}$ and $1.0 \times 10^5 \, \text{Pa}$?

	Volume / cm ³	Temperature / °C	Pressure / 10 ⁵ Pa
A.	50	54	1.0
B.	50	327	1.0
C.	100	54	2.0
D.	100	327	2.0

3. 100.0 cm³ of a 0.50 mol dm⁻³ solution of BaCl₂ is added to 50.0 cm³ of a 0.10 mol dm⁻³ solution of Na₂SO₄. A precipitate of BaSO₄ is formed according to the equation below.

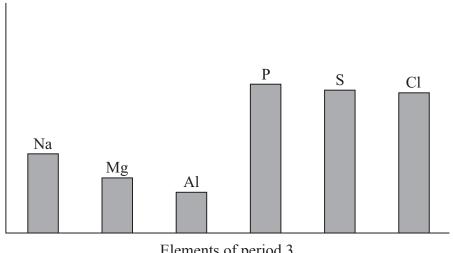

$$BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) + 2NaCl(aq)$$

What is the amount, in mol, of BaSO₄ produced?

- A. 0.0050
- B. 0.010
- C. 0.050
- D. 0.10

2214-6107

4. The diagram represents the emission spectrum of hydrogen. Groups of arrows are labelled W, X and Y.


Which statement is correct?

- A. The arrows represent the transition of electrons to different energy levels when heat is supplied.
- B. The arrows of **W** represent emission in the UV region.
- C. The smallest arrow of **X** represents a violet line in the emission spectrum.
- D. The arrows of Y represent emission of electromagnetic waves with higher energy than those represented by X and W.
- **5.** Which electron configurations do **not** follow the Hund's rule?

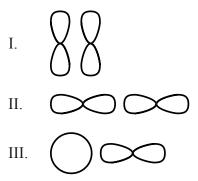
	1s	2s		2p	
I.	↑ ↓	↑ ↓	†	†	†
II.	↑ ↓	↑ ↓	↑ ↓	1	
III.	↑ ↓	↑ ↓	1	\	1

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

6. The horizontal axis of the bar chart represents the elements of period 3 from sodium to chlorine (excluding silicon). What could the vertical axis represent?

- Elements of period 3
- A. Melting point of the element
- B. Electronegativity of the bonded atom
- C. Ionic radius of the most common ion
- D. First ionization energy in the gaseous state
- 7. Which statements about reactivity are correct?
 - I. Potassium reacts more vigorously than sodium with chlorine.
 - Lithium reacts more vigorously than potassium with water. II.
 - Fluorine reacts more vigorously than bromine with a potassium iodide solution.
 - A. I and II only
 - В. I and III only
 - C. II and III only
 - D. I, II and III

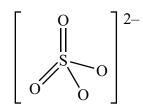
- **8.** Which ion is colourless?
 - A. $[Sc(H_2O)_6]^{3+}$
 - B. $[Cr(H_2O)_6]^{3+}$
 - C. $[Fe(H_2O)_6]^{3+}$
 - D. $[Fe(CN)_6]^{3-}$
- **9.** The electronegativities of four elements are given in the table.


Element	W	X	Y	Z
Electronegativity	0.9	1.1	3.4	4.0

Which statement is correct?

- A. W and X form an ionic compound.
- B. W and X form a covalent compound.
- C. Y and Z form an ionic compound.
- D. Y and Z form a covalent compound.
- 10. Which combination of length and strength of the carbon–to–carbon bonds in C_2H_2 and C_2H_4 is correct?

	Bond length	Bond strength
A.	$C_2H_2 > C_2H_4$	$C_2H_2 < C_2H_4$
B.	$C_2H_2 > C_2H_4$	$C_2H_2 > C_2H_4$
C.	$C_2H_2 < C_2H_4$	$C_2H_2 < C_2H_4$
D.	$C_2H_2 < C_2H_4$	$C_2H_2 > C_2H_4$

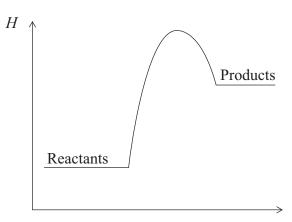

- 11. A solid has a melting point of 1582 °C and does not dissolve in water. It does not conduct electricity in the molten state. What type of structure does the solid have?
 - A. Ionic
 - B. Metallic
 - C. Giant molecular
 - D. Simple molecular
- 12. The diagrams below show s and p orbitals in different positions. Which combinations can form a σ -bond?

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

13. Which species contain delocalized electrons?

I.

II.


-8-

III.

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

14. Which statement is correct for the reaction with this enthalpy level diagram?

- Reaction progress
- A. Heat energy is released during the reaction and the reactants are more stable than the products.
- B. Heat energy is absorbed during the reaction and the reactants are more stable than the products.
- C. Heat energy is released during the reaction and the products are more stable than the reactants.
- D. Heat energy is absorbed during the reaction and the products are more stable than the reactants.

15. The enthalpy changes of three reactions are given below.

$$2HCOOH(1) + O_2(g) \rightarrow 2CO_2(g) + 2H_2O(1)$$
 $\Delta H = a$

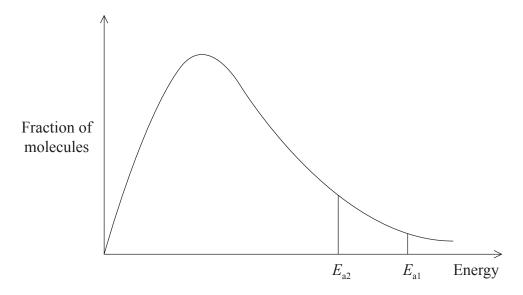
$$C_2H_5OH(1) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(1)$$
 $\Delta H = b$

$$2HCOOC_2H_5(1) + 7O_2(g) \rightarrow 6CO_2(g) + 6H_2O(1)$$
 $\Delta H = c$

What is the enthalpy change for the following reaction?

$$HCOOH(l) + C_2H_5OH(l) \rightarrow HCOOC_2H_5(l) + H_2O(l)$$

- A. a+b+c
- B. a+2b-c
- C. $\frac{1}{2}a + b + \frac{1}{2}c$
- D. $\frac{1}{2}a + b \frac{1}{2}c$
- **16.** What is the correct definition of lattice enthalpy?
 - A. Enthalpy change when one mole of a solid ionic compound is separated into gaseous ions.
 - B. Enthalpy change when one mole of a solid ionic compound is separated into its ions in their standard state.
 - C. Enthalpy change when one mole of a solid ionic compound is formed from gaseous elements.
 - D. Enthalpy change when one mole of a compound is formed from the elements in their standard states.
- 17. Which reaction has the greatest increase in entropy?


A.
$$2CH_3OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(l)$$

B.
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

C.
$$2HCl(aq) + MgCO_3(s) \rightarrow MgCl_2(aq) + H_2O(l) + CO_2(g)$$

D.
$$NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)$$

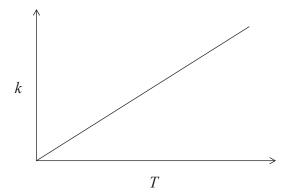
- **18.** Which change **must** be negative when a reaction occurs spontaneously?
 - A. ΔH
 - B. ΔG
 - C. ΔS
 - D. ΔT
- 19. The diagram represents the Maxwell-Boltzmann energy distribution curve of the reactants for a chemical reaction with different activation energies, $E_{\rm al}$ and $E_{\rm a2}$.

What is the reason why the rate of the reaction with activation energy $E_{\rm a2}$ is greater?

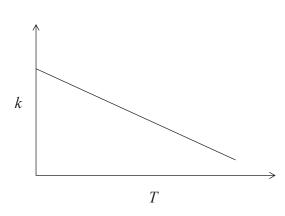
- A. More frequent collisions between the particles occur.
- B. More energetic collisions between the particles occur.
- C. A catalyst has been added.
- D. The temperature is higher.

20. X and Y react according to the equation $2X+Y\to Z$. The reaction can be described by the following mechanism:

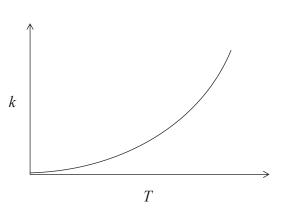
– 11 –

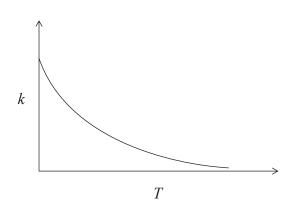

$$X + X \rightarrow X_2$$
 slow
 $X_2 + Y \rightarrow Z$ fast

What is the order of the reaction with respect to **X** and **Y**?


	X	Y
A.	First	Zero
B.	First	First
C.	Second	Zero
D.	Second	First

21. The rate constant for a reaction is determined at different temperatures. Which diagram represents the relationship between the rate constant, k, and temperature, T, in K?


A.


B.


C.

D.

- 22. Which statement is correct for a reversible reaction when $K_c >> 1$?
 - A. The reaction almost goes to completion.
 - B. The reaction hardly occurs.
 - C. Equilibrium is reached in a very short time.
 - D. At equilibrium, the rate of the forward reaction is much higher than the rate of the backward reaction.
- 23. The diagram represents the vapour pressure of two liquids, **A** and **B**, as temperature changes. **Y** is a point on the curve of liquid **A**.

Which statement can be made using the graph?

- A. At the conditions of pressure and temperature at point **Y**, **A** is in the liquid phase and **B** in the gaseous phase.
- B. At the conditions of pressure and temperature at point Y, both A and B are in the gaseous phase.
- C. At the same pressure, **A** has a higher boiling point than **B**.
- D. The intermolecular forces between the molecules of **B** are stronger than between the molecules of **A**.

A.
$$H_2O + NH_4^+ \rightarrow H_3O^+ + NH_3$$

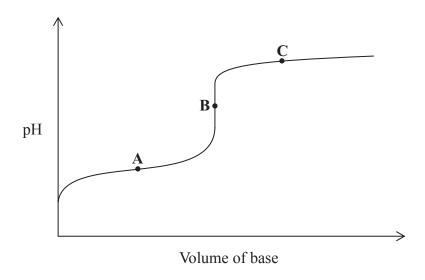
B.
$$H_2O + CaO \rightarrow Ca^{2+} + 2OH^{-}$$

C.
$$H_2O + [Fe(H_2O)_6]^{3+} \rightarrow Fe[(OH)(H_2O)_5]^{2+} + H_3O^{+}$$

D.
$$6H_2O + [Ni(NH_3)_6]^{2+} \rightarrow 6NH_3 + [Ni(H_2O)_6]^{2+}$$

25. A solution of 50 cm³ hydrochloric acid has a pH of 4. What is the final pH if 450 cm³ of water is added?

- A. 3
- B. 4
- C. 5
- D. 6


26. The p K_b of HS⁻ is 7.08. What is its conjugate acid and what is the K_a value of the acid?

	Conjugate acid	K_{a}
A.	H_2S	$10^{-6.92}$
B.	H_2S	6.92
C.	S^{2-}	$10^{-6.92}$
D.	S ²⁻	6.92

27. Which mixture of solutions can be used to prepare a buffer solution?

- A. $50.0 \,\mathrm{cm^3~0.100\,mol\,dm^{-3}\,HCl}$ and $100.0 \,\mathrm{cm^3~0.100\,mol\,dm^{-3}\,NH_3}$
- $B.~~50.0\,cm^{3}~0.100\,mol\,dm^{-3}~HCl~and~50.0\,cm^{3}~0.100\,mol\,dm^{-3}~NH_{3}$
- $C. \qquad 50.0 \, \text{cm}^3 \,\, 0.100 \, \text{mol dm}^{-3} \, HCl \, \, \text{and} \, \, 100.0 \, \text{cm}^3 \,\, 0.100 \, \text{mol dm}^{-3} \, \, NH_4Cl$
- $D. \hspace{0.5cm} 50.0 \, cm^{3} \, 0.100 \, mol \, dm^{-3} \, HCl \, and \, 50.0 \, cm^{3} \, 0.100 \, mol \, dm^{-3} \, NH_{4}Cl$

28. A weak acid is titrated with a strong base. Which statement is true for the titration curve?

- A. A is the equivalence point.
- B. The pH at **A** equals the pK_a of the acid.
- C. The pH at **B** equals 7.
- D. C is in the buffer region.
- 29. Methyl orange is an indicator which changes its colour from red to yellow in a pH range of 3.2 4.4. For which titration would methyl orange be a suitable indicator?
 - A. Iodine and sodium thiosulfate solution
 - B. Hydrochloric acid and ammonia solution
 - C. Ethanoic acid and sodium hydroxide solution
 - D. Ethanoic acid and ammonia solution

30. At which side of the equation are electrons, H⁺ ions and H₂O needed to complete the half-equation?

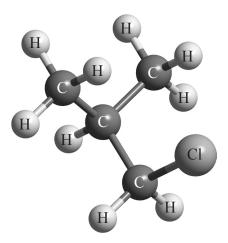
$$MnO_4^-(aq) \rightarrow Mn^{2+}(aq)$$

	Electrons	H ⁺ ions	H ₂ O
A.	reactant side	reactant side	product side
B.	reactant side	product side	reactant side
C.	product side	reactant side	product side
D.	product side	product side	reactant side

- 31. What are the correct names for $KMnO_4$ and $K_2Cr_2O_7$, using oxidation numbers?
 - A. Potassium permanganate and potassium dichromate
 - B. Potassium manganate(IV) and potassium chromate(VII)
 - C. Potassium permanganate(IV) and potassium dichromate(VII)
 - D. Potassium manganate(VII) and potassium dichromate(VI)
- **32.** What is an industrial use of electrolysis?
 - A. The production of graphite
 - B. The production of iron
 - C. The production of electric energy
 - D. Electroplating

$$Ni(s) + 2Ag^{+}(aq) \rightleftharpoons Ni^{2+}(aq) + 2Ag(s)$$
 $E^{\Theta} = 1.06 \text{ V}$

− 16 **−**


The standard electrode potential for $Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$, is -0.26 V. What is the standard electrode potential for the silver half-cell, $Ag^+(aq) + e^- \rightleftharpoons Ag(s)$, in V?

- A. -1.32
- B. -0.80
- C. +0.80
- D. +1.32

34. What is the IUPAC name for $(CH_3)_2COH(CH_2)_2CH_3$?

- A. Hexan-3-ol
- B. 2-methylpentan-2-ol
- C. 2-methylpentan-3-ol
- D. Dimethylpentan-1-ol

35. Which type of halogenoalkane is the substance shown below, and which type of nucleophilic reaction does it undergo with an aqueous sodium hydroxide solution?

	Type of halogenoalkane	Type of nucleophilic reaction
A.	primary	$S_N 1$
B.	tertiary	$S_N 1$
C.	primary	$S_N 2$
D.	tertiary	$S_N 2$

- **36.** Which reaction produces **only** butan-2-ol?
 - A. Addition of water to but-2-ene
 - B. Addition of water to but-1-ene
 - C. Reaction of 2-bromobutane with alcoholic sodium hydroxide
 - D. Reaction of 1-bromobutane with alcoholic sodium hydroxide

2214-6107 **Turn over**

37. Which functional groups are present in C₆H₅CONHCH₃?

- A. amide and benzene ring (phenyl)
- B. amine, benzene ring (phenyl) and carbonyl
- C. benzene ring (phenyl) and carbonyl
- D. amine and benzene ring (phenyl)
- **38.** Which two compounds can form a polyester?

- **39.** Which statement about isomerism is correct?
 - A. But-1-ene and but-2-ene are geometrical isomers.
 - B. But-1-ene has two geometrical isomers.
 - C. Butan-1-ol and butan-2-ol are optical isomers.
 - D. Butan-2-ol has two optical isomers.
- **40.** A student carries out a titration three times and obtains the following volumes: $3.0 \pm 0.1 \,\text{cm}^3$, $3.2 \pm 0.1 \,\text{cm}^3$ and $3.2 \pm 0.1 \,\text{cm}^3$. What is the average volume?
 - A. $3.1 \pm 0.1 \,\text{cm}^3$
 - B. $3.13 \pm 0.1 \,\mathrm{cm}^3$
 - C. $3.1 \pm 0.3 \,\text{cm}^3$
 - D. $3.13 \pm 0.3 \,\mathrm{cm}^3$