88136101

CHEMISTRY

HIGHER LEVEL

PAPER 1

Monday 18 November 2013 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [40 marks].
The Periodic Table

1. What is the total number of oxygen atoms in 0.200 mol of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
A. 1.20
B. 6.00
C. 1.20×10^{23}
D. 7.22×10^{23}
2. What are the coefficients of $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ when the following equation is balanced using the smallest possible whole numbers?

$$
\ldots \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\ldots \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \ldots \mathrm{CaSO}_{4}(\mathrm{~s})+\ldots \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})
$$

A.
B.

Coefficient of $\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{4}(\mathbf{a q})$	Coefficient of $\mathbf{H}_{3} \mathbf{P O}_{\mathbf{4}}(\mathbf{a q})$
1	2
2	3
3	1
3	2

3. 7.102 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}\left(M=142.04 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ is dissolved in water to prepare $0.5000 \mathrm{dm}^{3}$ of solution. What is the concentration of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in moldm ${ }^{-3}$?
A. 2.500×10^{-2}
B. 1.000×10^{-1}
C. 1.000×10
D. 1.000×10^{2}
4. What are the numbers of neutrons and electrons in the iodine ion, ${ }^{125} I^{+}$?
A.

Neutrons	Electrons
53	53
72	52
72	53
125	52

5. What is the abbreviated electron configuration of the telluride ion, Te^{2-} ?
A. $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 5 \mathrm{~d}^{10} 5 \mathrm{p}^{6}$
B. $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{2}$
C. $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{4}$
D. $[\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{10} 5 \mathrm{p}^{6}$
6. Which series is arranged in order of increasing radius?
A. $\mathrm{F}<\mathrm{Cl}^{-}<\mathrm{Cl}$
B. $\mathrm{Rb}<\mathrm{K}<\mathrm{Na}$
C. $\mathrm{Al}^{3+}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}$
D. $\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}$
7. Which oxides form acidic solutions when added to water?
A. $\quad \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})$ and $\mathrm{SO}_{3}(\mathrm{~g})$
B. $\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$ and $\mathrm{MgO}(\mathrm{s})$
C. $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ and $\mathrm{SiO}_{2}(\mathrm{~s})$
D. $\mathrm{MgO}(\mathrm{s})$ and $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
8. Which compound is likely to be colourless?
A. $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{SO}_{4}\right]_{2}$
C. $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{BF}_{4}\right]_{2}$
9. What is the formula of calcium nitride?
A. $\mathrm{Ca}_{3} \mathrm{~N}_{2}$
B. $\mathrm{Ca}_{2} \mathrm{~N}_{3}$
C. $\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2}$
D. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
10. Which compounds have an ionic lattice structure in the solid state?
I. Silicon dioxide
II. Sodium fluoride
III. Ammonium nitrate
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
11. Which intermolecular forces exist between the following molecules?

	$\mathbf{H}_{2} \mathbf{S e}$	$\mathbf{C O}$	\mathbf{H}_{2}
A.	van der Waals' and dipole-dipole	van der Waals' and dipole-dipole	van der Waals' only
B.	van der Waals', dipole-dipole and hydrogen bonding	van der Waals' only	van der Waals' and hydrogen bonding
C.	van der Waals', dipole-dipole and hydrogen bonding	van der Waals' and dipole-dipole	van der Waals' only
D.	van der Waals' and dipole-dipole	van der Waals' and dipole-dipole	van der Waals' and hydrogen bonding

12. Which species have dative covalent bonding?
I. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
II. NH_{4}^{+}
III. $\mathrm{H}_{2} \mathrm{O}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
13. How many sigma (σ) and pi (π) bonds are there in $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CCCH}_{2} \mathrm{COOH}$?
A. $\quad 13 \sigma$ and 5π
B. 15σ and 2π
C. $\quad 15 \sigma$ and 3π
D. 15σ only
14. What is the hybridization of atoms \mathbf{X}, \mathbf{Y} and \mathbf{Z} in epinephrine?

A.
B.

\mathbf{X}	\mathbf{Y}	\mathbf{Z}
sp^{2}	sp^{3}	sp^{3}
sp^{2}	sp	sp^{3}
sp^{3}	sp^{2}	sp^{2}
sp^{3}	sp^{3}	sp^{3}

15. Which processes are exothermic?
I. $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
II. $\quad \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{g})$
III. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
16. Consider the following two equations.

$$
\begin{array}{ll}
2 \mathrm{Ca}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CaO}(\mathrm{~s}) & \Delta H^{\ominus}=+x \mathrm{~kJ} \\
\mathrm{Ca}(\mathrm{~s})+0.5 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s}) & \Delta H^{\ominus}=+y \mathrm{~kJ}
\end{array}
$$

What is ΔH^{\ominus}, in kJ , for the following reaction?

$$
\mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})
$$

A. $y-0.5 x$
B. $y-x$
C. $0.5-y$
D. $x-y$
17. Which ionic compound has the most endothermic lattice enthalpy?
A. Sodium chloride
B. Sodium oxide
C. Magnesium chloride
D. Magnesium oxide
18. Which processes are predicted to have a positive entropy change, ΔS ?
I. $\quad \mathrm{I}_{2}(\mathrm{~g}) \rightarrow \mathrm{I}_{2}(\mathrm{~s})$
II. $\quad 4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
III. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
19. Which combination of ΔH and ΔS signs will always result in a spontaneous reaction at all temperatures?
A.

$\boldsymbol{\Delta H}$	$\Delta \boldsymbol{S}$
+	+
+	-
-	-
-	+

20. The diagram below shows the energy changes for a reaction with and without a catalyst. Which symbols represent the activation energy, E_{a}, and the enthalpy change, ΔH, for the reaction with a catalyst?

A.

$\boldsymbol{E}_{\mathbf{a}}$ (with a catalyst)	$\boldsymbol{\Delta} \boldsymbol{H}$
x	z
y	z
z	x
$y-x$	z

21. The following experimental rate data were obtained for a reaction carried out at temperature T.

$$
\mathrm{A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{~g})+\mathrm{D}(\mathrm{~g})
$$

Initial $[\mathbf{A}(\mathbf{g})] / \mathbf{m o l ~ d m}^{-3}$	Initial $[\mathbf{B}(\mathbf{g})] / \mathbf{m o l ~ d m}^{-3}$	Initial rate $/ \mathbf{m o l ~ d m}^{-3} \mathbf{s}^{\mathbf{- 1}}$
3.00×10^{-1}	2.00×10^{-1}	1.89×10^{-2}
3.00×10^{-1}	4.00×10^{-1}	1.89×10^{-2}
6.00×10^{-1}	4.00×10^{-1}	7.56×10^{-2}

What are the orders with respect to $\mathrm{A}(\mathrm{g})$ and $\mathrm{B}(\mathrm{g})$?
A.

Order with respect to A(g)	Order with respect to B(g)
zero	second
first	zero
second	zero
second	first

22. Consider the following proposed two-step reaction mechanism at temperature T.

$$
\begin{array}{lll}
\text { Step 1: } & 2 \mathrm{NO}_{2}(\mathrm{~g}) \xrightarrow{k_{1}} \mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g}) & \text { Slow } \\
\text { Step 2: } & \mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \xrightarrow{k_{2}} \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) & \text { Fast }
\end{array}
$$

Which statements are correct?
I. The overall reaction is $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$.
II. Step 1 is the rate-determining step of the reaction.
III. The rate expression for Step 1 is rate $=k_{1}\left[\mathrm{NO}_{2}\right]^{2}$.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
23. Which of the following will shift the position of equilibrium to the right in the Haber process?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H^{\ominus}=-92.6 \mathrm{~kJ}
$$

I. Decreasing the concentration of $\mathrm{NH}_{3}(\mathrm{~g})$
II. Decreasing the temperature
III. Increasing the pressure
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
24. Which compound has the highest molar enthalpy of vaporization?
A. Ethane
B. Ethanoic acid
C. Propane
D. Propanoic acid
25. What are the conjugate acid-base pairs in the following reaction?

$$
\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})
$$

A.

Brønsted-Lowry acid	Brønsted-Lowry base	Conjugate acid	Conjugate base
$\mathrm{HCO}_{3}^{-}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$	$\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$	$\mathrm{OH}^{-}(\mathrm{aq})$	$\mathrm{HCO}_{3}^{-}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{HCO}_{3}^{-}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$	$\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{HCO}_{3}^{-}(\mathrm{aq})$	$\mathrm{OH}^{-}(\mathrm{aq})$	$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$

26. Which group of three compounds contains only weak acids and bases?
A.

$\mathrm{Ba}(\mathrm{OH})_{2}$	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$	HCOOH
NH_{3}	HNO_{3}	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
NH_{3}	NaOH	$\mathrm{H}_{2} \mathrm{CO}_{3}$

27. What is the relationship between $\mathrm{p} K_{\mathrm{a}}, \mathrm{p} K_{\mathrm{b}}$ and $\mathrm{p} K_{\mathrm{w}}$ for a conjugate acid-base pair?
A. $\mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{w}}+\mathrm{p} K_{\mathrm{b}}$
B. $\mathrm{p} K_{\mathrm{a}}=\mathrm{p} K_{\mathrm{w}}-\mathrm{p} K_{\mathrm{b}}$
C. $\mathrm{p} K_{\mathrm{a}} \times \mathrm{p} K_{\mathrm{b}}=\mathrm{p} K_{\mathrm{w}}$
D. $\frac{\mathrm{p} K_{\mathrm{a}}}{\mathrm{p} K_{\mathrm{b}}}=\mathrm{p} K_{\mathrm{w}}$
28. The table below shows data for the K_{a} and $\mathrm{p} K_{\mathrm{b}}$ values for some acids and bases at 298 K .

Acid	$\boldsymbol{K}_{\mathbf{a}}$	Base	$\mathbf{p} \boldsymbol{K}_{\mathbf{b}}$
HClO	2.9×10^{-8}	NH_{3}	4.75
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$	4.9×10^{-5}	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	9.13

Which two formulas represent the weakest acid and the weakest base in the table?
A. HClO and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$ and NH_{3}
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
D. HClO and NH_{3}
29. Which pair of compounds could be used to make a buffer solution (assuming appropriate molar ratios)?
A. KCl and HCl
B. NaCl and HCl
C. KHSO_{4} and $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $\mathrm{CH}_{3} \mathrm{COONa}$ and $\mathrm{CH}_{3} \mathrm{COOH}$
30. Which salts form acidic solutions when dissolved in water?
I. $\quad \mathrm{NH}_{4} \mathrm{Cl}$
II. $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$
III. $\mathrm{CH}_{3} \mathrm{COONa}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
31. What is the name of MnO_{2} ?
A. Manganese(II) oxide
B. Magnesium(II) oxide
C. Manganese(IV) oxide
D. Magnesium(IV) oxide
32. Consider the following reaction.

$$
2 \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+6 \mathrm{ClO}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})+3 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which statement is correct?
A. $\mathrm{Cr}(\mathrm{OH})_{3}$ is the oxidizing agent and the oxidation number of chromium changes from +3 to +6 .
B. $\mathrm{Cr}(\mathrm{OH})_{3}$ is the reducing agent and undergoes reduction.
C. ClO^{-}is the oxidizing agent and the oxidation number of chlorine changes from +1 to 0 .
D. ClO^{-}is the reducing agent and the oxidation number of chlorine changes from -1 to 0 .
33. Consider the following two standard electrode potentials at 298 K .

$$
\begin{array}{ll}
\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}(\mathrm{~s}) & E^{\ominus}=-0.14 \mathrm{~V} \\
\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq}) & E^{\ominus}=+0.77 \mathrm{~V}
\end{array}
$$

What is the equation and cell potential for the spontaneous reaction that occurs?
A. $2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Sn}(\mathrm{s}) \quad E^{\ominus}=-0.91 \mathrm{~V}$
B. $2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Sn}(\mathrm{s}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \quad E^{\ominus}=+0.91 \mathrm{~V}$
C. $2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Sn}(\mathrm{s}) \quad E^{\ominus}=+0.91 \mathrm{~V}$
D. $2 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Sn}(\mathrm{s}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Sn}^{2+}(\mathrm{aq}) \quad E^{\ominus}=+1.68 \mathrm{~V}$
34. What happens during the electrolysis of concentrated aqueous potassium chloride?
I. Reduction takes place at the negative electrode (cathode).
II. Hydrogen gas is evolved at the negative electrode (cathode).
III. The pH of the electrolyte increases.
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
35. What is the name of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOCH}_{3}$, applying IUPAC rules?
A. 2,2-dimethylbutan-3-one
B. 3,3-dimethylbutan-2-one
C. 2,2-dimethylbutanal
D. 3,3-dimethylbutanal
36. Which functional groups are present in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONHC}_{6} \mathrm{H}_{5}$?
A. Benzene ring (phenyl), amine
B. Benzene ring (phenyl), ketone, amine
C. Benzene ring (phenyl), amide
D. Alkene, amide
37. What is the product of the reaction when $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CN}$ is reduced by hydrogen, using a nickel catalyst under the appropriate conditions?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
38. What is the major organic product formed from the reaction of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ with a concentrated, ethanolic solution of KOH ?
A. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
B. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCH}_{2}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
D. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}$
39. What is the organic product of the reaction between butan-1-ol and ethanoic acid on heating using concentrated sulfuric acid?
A. Butyl methanoate
B. Butyl ethanoate
C. Ethyl butanoate
D. Ethyl propanoate
40. A student measured the mass and volume of a piece of silver and recorded the following values.

Mass of empty weighing bottle	1.0800 g
Mass of weighing bottle with piece of silver	11.5700 g
Volume of silver	$1.00 \mathrm{~cm}^{3}$

Which value, in $\mathrm{g} \mathrm{cm}^{-3}$, for the density of silver should the student report in her laboratory notebook?
A. $\quad 10.49$
B. $\quad 10.4900$
C. 10.5
D. 10.500

