

CHEMISTRY HIGHER LEVEL PAPER 1

Friday 9 November 2012 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [40 marks].

0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)			
٢		9 F 19.00	17 Cl 35.45	35 Br 79.90	53 I 126.90	85 At (210)		71 Lu 174.97	103 Lr (260)
9		8 O 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)		70 Yb 173.04	102 No (259)
v		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98		69 Tm 168.93	101 Md (258)
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19		68 Er 167.26	100 Fm (257)
ъ		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37		67 Ho 164.93	99 Es
				30 Zn 65.37	48 Cd 112.40	80 Hg 200.59		66 Dy 162.50	98 Cf (251)
ole				29 Cu 63.55	47 Ag 107.87	79 Au 196.97		65 Tb 158.92	97 Bk (247)
dic Tal				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09		64 Gd 157.25	96 Cm (247)
The Periodic Table				27 Co 58.93	45 Rh 102.91	77 Ir 192.22		63 Eu 151.96	95 Am (243)
The				26 Fe 55.85	44 Ru 101.07	76 Os 190.21		62 Sm 150.35	94 Pu (242)
			1	25 Mn 54.94	43 Tc 98.91	75 Re 186.21		61 Pm 146.92	93 Np (237)
	number	Element Relative atomic mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85		60 Nd 144.24	92 U 238.03
	Atomic number	Eler Relative at		23 V 50.94	41 Nb 92.91	73 Ta 180.95		59 Pr 140.91	91 Pa 231.04
	<u> </u>			22 Ti 47.90	40 Zr 91.22	72 Hf 178.49		58 Ce 140.12	90 Th 232.04
			,	21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)	* -	**
7		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)		
1	1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		

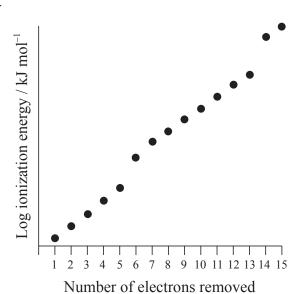
- 1. What is the number of ions in 0.20 mol of $(NH_4)_3PO_4$?
 - A. 8.0×10^{-1}
 - B. 1.2×10^{23}
 - C. 4.8×10^{23}
 - D. 2.4×10^{24}
- **2.** The equation for the reduction of iron(III) oxide is:

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

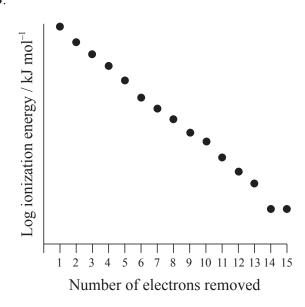
What mass of carbon dioxide, in g, is produced by the complete reduction of 80 g of iron(III) oxide?

- A. 44
- B. 66
- C. 88
- D. 132
- 3. 3.0 dm³ of ethyne, C₂H₂, is mixed with 3.0 dm³ of hydrogen and ignited. The equation for the reaction that occurs is shown below.

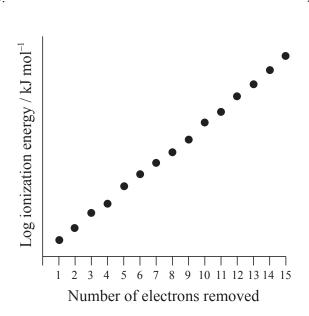
$$C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$$

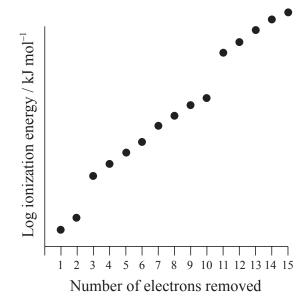

Assuming the reaction goes to completion and all gas volumes are measured at the same temperature and pressure, what volume of ethane, C_2H_6 , in dm³, is formed?

- A. 1.5
- B. 2.0
- C. 3.0
- D. 6.0


- **4.** Which ion would be deflected the most in a mass spectrometer?
 - A. ${}^{35}Cl^{+}(g)$
 - B. ${}^{37}\text{Cl}^+(g)$
 - C. ${}^{35}\text{Cl}^{2+}(g)$
 - D. ${}^{37}\text{Cl}^{2+}(g)$
- 5. Which of the graphs below shows the successive logarithmic ionization energies of phosphorus?

-4-


A.


B.

C.

D.

6. Which combination is correct for the properties of the alkali metals from Li to Cs?

	Atomic radius	Melting point	First ionization energy
A.	increases	increases	increases
B.	increases	decreases	decreases
C.	increases	increases	decreases
D.	decreases	decreases	increases

7. Which equation represents a reaction that occurs under normal conditions?

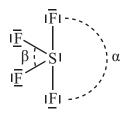
A.
$$2\text{LiBr}(aq) + I_2(aq) \rightarrow 2\text{LiI}(aq) + \text{Br}_2(aq)$$

B.
$$2KF(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + F_2(aq)$$

C.
$$2\text{LiCl}(aq) + I_2(aq) \rightarrow 2\text{LiI}(aq) + \text{Cl}_2(aq)$$

D.
$$2KBr(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + Br_2(aq)$$

8. Which combination of statements about the oxides of period 3 elements is correct?


	State a	nt room tempe	rature	Electrical co	onductivity in	molten state
	Na ₂ O	Al_2O_3	P_4O_{10}	Na ₂ O	Al ₂ O ₃	P ₄ O ₁₀
A.	solid	solid	gas	good	good	good
B.	solid	solid	solid	good	good	poor
C.	solid	liquid	liquid	good	poor	poor
D.	solid	solid	solid	poor	poor	good

- **9.** Which is an ionic compound?
 - A. Mg_3N_2
 - B. Al₂Cl₆
 - C. SiO₂
 - D. SF₆
- **10.** Which molecule is polar?

	Molecule	Shape
A.	CO_2	linear
B.	SO_3	trigonal planar
C.	CCl ₄	tetrahedral
D.	SO_2	bent (V-shaped)

- 11. Which intermolecular forces are present in HI(l)?
 - I. Hydrogen bonding
 - II. Dipole-dipole forces
 - III. Van der Waals' (London dispersion) forces
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

In the molecule SF₄, which are the correct bond angles? **12.**

- A. 180 120

 α / $^{\circ}$

- B. 187 103
- C. 187 120
- D. 90 180
- Which substances have delocalized electrons in their structure? 13.

β/°

- I. Ethanal
- II. Ozone
- III. Benzene
- A. I and II only
- B. I and III only
- C. II and III only
- I, II and III D.
- A 5.00 g sample of a substance was heated from 25.0 °C to 35.0 °C using 2.00×10^2 J of energy. What is the specific heat capacity of the substance in J g⁻¹ K⁻¹? 14.
 - 4.00×10^{-3} A.
 - 2.50×10^{-1} B.
 - C. 2.00
 - D. 4.00

15. Using the equations below:

$$\begin{split} & \text{C(s)} + \text{O}_2(\text{g}) \to \text{CO}_2(\text{g}) & \Delta H^{\ominus} = -390 \text{ kJ} \\ & \text{H}_2(\text{g}) + \frac{1}{2} \text{O}_2(\text{g}) \to \text{H}_2 \text{O(l)} & \Delta H^{\ominus} = -286 \text{ kJ} \\ & \text{CH}_4(\text{g}) + 2 \text{O}_2(\text{g}) \to \text{CO}_2(\text{g}) + 2 \text{H}_2 \text{O(l)} & \Delta H^{\ominus} = -890 \text{ kJ} \end{split}$$

what is ΔH^{\oplus} , in kJ, for the following reaction?

$$C(s) + 2H_2(g) \rightarrow CH_4(g)$$

- A. -214
- B. -72
- C. +72
- D. +214

16. Which is the best definition of electron affinity?

- A. The ability of an atom to attract the electrons in a covalent bond.
- B. The attraction of an atom for an electron.
- C. The enthalpy change when an atom gains an electron.
- D. The enthalpy change when a gaseous atom gains an electron.

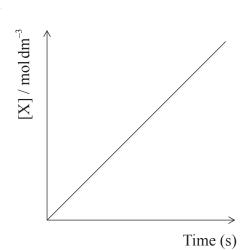
17. Which is the best definition of the standard state?

- A. The standard state of a solid is the most pure form of the solid.
- B. The standard state of a solid is the most pure form of the solid at 298 °C.
- C. The standard state of a gas is the most pure form of the gas at 298 °C.
- D. The standard state of a gas is the most pure form of the gas at a pressure of 100 kPa.

18. Consider the following information:

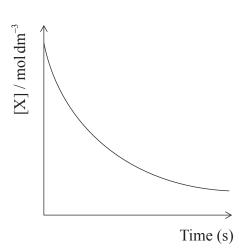
$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

 $\Delta H = +179 \text{ kJ mol}^{-1}$
 $\Delta S = +161.0 \text{ J K}^{-1} \text{ mol}^{-1}$

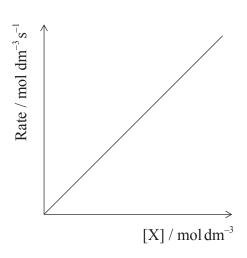

What happens to the spontaneity of this reaction as the temperature is increased?

- A. The reaction becomes more spontaneous as the temperature is increased.
- B. The reaction becomes less spontaneous as the temperature is increased.
- C. The reaction remains spontaneous at all temperatures.
- D. The reaction remains non-spontaneous at all temperatures.
- 19. Which piece of equipment could **not** be used in an experiment to measure the rate of this reaction?

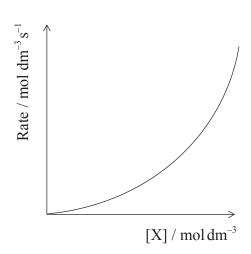
$$\mathrm{CH_3COCH_3(aq)} + \mathrm{I_2(aq)} \rightarrow \mathrm{CH_3COCH_2I(aq)} + \mathrm{H^+(aq)} + \mathrm{I^-(aq)}$$


- A. A colorimeter
- B. A gas syringe
- C. A stopwatch
- D. A pH meter

A.



В.


-10 -

C.

D.

- 21. Which step in a multi-step reaction mechanism will be rate-determining?
 - A. The first step
 - B. The last step
 - C. The step with the highest activation energy
 - D. The step with the lowest activation energy

$$Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons [FeSCN]^{2+}(aq)$$
 $\Delta H^{\ominus} = +ve$
Yellow Red

- I. Increasing the temperature
- II. Adding FeCl₃
- III. Adding a catalyst
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **23.** Consider the following reversible reaction:

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

What is the value of K_c for the reaction when the equilibrium concentrations are $[NO_2] = 4.0 \text{ mol dm}^{-3}$ and $[N_2O_4] = 4.0 \text{ mol dm}^{-3}$?

- A. 0.25
- B. 0.50
- C. 2.0
- D. 4.0
- 24. Which substance can act as a Lewis acid but not as a Brønsted–Lowry acid?
 - A. HCl
 - B. CH₃COOH
 - C. BF₃
 - D. CF₃COOH

	рН	Colour in universal indicator solution	Electrical conductivity
A.	14	purple	good
B.	10	green	poor
C.	14	red	good
D.	10	blue	poor

- **26.** For pure water at 50 °C, $K_{\rm w} = 5.48 \times 10^{-14}$. What is the pH of this water?
 - A. 4.8
 - B. 6.6
 - C. 7.0
 - D. 8.2

27. Which is the strongest acid?

	Acid	$\mathbf{p}\mathbf{\mathit{K}}_{\mathrm{a}}$
A.	chloroethanoic	2.87
B.	iodoethanoic	3.18
C.	benzoic	4.20
D.	pentanoic	4.83

- **28.** Which salts will dissolve in water to give solutions with a pH above 7?
 - I. Na₂CO₃
 - II. CH₃COONa
 - III. Na₂SO₄
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **29.** During a titration, 0.1 mol dm⁻³ sodium hydroxide is added to 0.1 mol dm⁻³ ethanoic acid. Which indicator would be the **best** to use as an end point indicator in this titration?

	Indicator	pH range of indicator
A.	methyl orange	3.2-4.4
B.	bromophenol blue	3.0-4.6
C.	bromothymol blue	6.0-7.6
D.	phenolphthalein	8.2–10.0

- **30.** What is the correct systematic name of MnO₂?
 - A. Manganese(II) oxide
 - B. Manganese(IV) oxide
 - C. Magnesium(II) oxide
 - D. Magnesium(IV) oxide

$$Zn(s) + Pb^{2+}(aq) \rightarrow Pb(s) + Zn^{2+}(aq)$$

Which statements are correct when the cell produces electricity?

- I. The zinc is oxidized.
- II. Electrons move from zinc to lead in the external circuit.
- III. The mass of the lead electrode increases.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **32.** Consider the following standard electrode potential values:

Fe³⁺(aq) + e⁻
$$\rightleftharpoons$$
 Fe²⁺(aq) $E^{\ominus} = +0.77 \text{ V}$
MnO₄⁻(aq) + 8H⁺(aq) + 5e⁻ \rightleftharpoons Mn²⁺(aq) + 4H₂O(l) $E^{\ominus} = +1.51 \text{ V}$

What is the cell potential, in V, for this reaction?

$${\rm MnO_4}^-({\rm aq}) + 8{\rm H^+(aq)} + 5{\rm Fe^{2+}(aq)} \rightarrow {\rm Mn^{2+}(aq)} + 4{\rm H_2O(l)} + 5{\rm Fe^{3+}(aq)}$$

- A. -2.28
- B. -0.74
- C. +0.74
- D. +2.28

$$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Ca}(s)$$
 $E^{\ominus} = -2.87 \text{ V}$

Fe²⁺(aq) + 2e⁻
$$\rightleftharpoons$$
 Fe(s) $E^{\ominus} = -0.45 \text{ V}$
Ni²⁺(aq) + 2e⁻ \rightleftharpoons Ni(s) $E^{\ominus} = -0.26 \text{ V}$
Fe³⁺(aq) + e⁻ \rightleftharpoons Fe²⁺(aq) $E^{\ominus} = +0.77 \text{ V}$

$$Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$$
 $E^{\Theta} = -0.26 \text{ V}$

$$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$$
 $E^{\Theta} = +0.77 \text{ V}$

Which reaction is spontaneous?

A.
$$Ca^{2+}(aq) + Ni(s) \rightarrow Ca(s) + Ni^{2+}(aq)$$

B.
$$3Fe^{2+}(aq) \rightarrow Fe(s) + 2Fe^{3+}(aq)$$

C.
$$Fe(s) + 2Fe^{3+}(aq) \rightarrow 3Fe^{2+}(aq)$$

D.
$$\operatorname{Fe}^{2+}(aq) + \operatorname{Ni}(s) \rightarrow \operatorname{Fe}(s) + \operatorname{Ni}^{2+}(aq)$$

34. Which compound has the lowest boiling point?

- A. (CH₃)₃COH
- CH₃(CH₂)₃OH В.
- C. $(CH_3)_4C$
- D. CH₃(CH₂)₃CH₃

35. Which compound would decolourize bromine water in the dark?

- A. CH₃COCH₂CH₃
- В. CH₃(CH₂)₄OH
- C. CH₃CHCHCH₃
- D. $CH_3(CH_2)_3CH_3$

36. Which statement about the oxidation of alcohols is corrected.
--

- A. Oxidation of propan-1-ol produces propanone.
- B. Mild oxidation of butan-1-ol produces butanal.
- C. Strong oxidation of pentan-2-ol produces pentanoic acid.
- D. Mild oxidation of butan-2-ol produces butanal.
- **37.** Which halogenoalkane will react most quickly with sodium hydroxide?
 - A. CH₃CH₂CH₂CH₂Cl
 - B. CH₃CH₂CH₂CH₂Br
 - C. $(CH_3)_3CC1$
 - D. $(CH_3)_3CBr$
- **38.** Which would be the main product of the reaction between 1-bromobutane and concentrated sodium hydroxide in hot ethanol?
 - A. CH,CHCH,CH,
 - B. CH₃CHCHCH₃
 - C. CH₃CH₂CH₂CH₃
 - D. CH₃CHOHCH₂CH₃

- **39.** Which molecules can react to form a condensation polymer with a dicarboxylic acid such as hexanedioic acid?
 - I. HOCH₂CH₂OH
 - II. CH₃CH₂NH₂
 - III. $H_2N(CH_2)_6NH_2$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **40.** 50 cm³ of copper(II) sulfate solution is measured into a plastic cup using a 100 cm³ measuring cylinder. Excess zinc powder is added and the temperature rise that occurs is measured with a −10 °C to +110 °C thermometer. The enthalpy change for the reaction is then calculated. Which statement is correct?
 - A. Systematic error will be reduced by repeating the experiment several times and averaging the results.
 - B. Random error will be reduced by insulating the plastic cup.
 - C. Random error will be reduced by using a 50 cm³ graduated pipette instead of a measuring cylinder.
 - D. Systematic error will be increased by using a larger volume of copper(II) sulfate solution.