International Baccalaureate ${ }^{\oplus}$
Baccalauréat International
Bachillerato Internacional

88096101

CHEMISTRY

HIGHER LEVEL

PAPER 1

Tuesday 3 November 2009 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
The Periodic Table

1	2											3	4	5	6	7	0
$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number Element Atomic Mass													$\begin{gathered} 2 \\ \mathrm{He} \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.01 \end{gathered}$											$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} { }^{6} \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ \mathbf{N e} \\ 20.18 \end{array}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ 35.45 \end{gathered}$	$\begin{array}{\|c\|} \hline 18 \\ \mathbf{A r} \\ 39.95 \end{array}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \end{gathered}$	$\begin{array}{\|c\|} \hline 21 \\ \text { Sc } \\ 44.96 \end{array}$	$\begin{array}{\|c} 22 \\ \mathrm{Ti} \\ 47.90 \end{array}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \text { Mn } \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \text { Fe } \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \mathbf{C 0} \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \text { Ga } \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.90 \end{gathered}$	$\begin{array}{\|c\|} 36 \\ \mathbf{K r} \\ 83.80 \end{array}$
$\begin{gathered} 37 \\ \text { Rb } \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{array}{\|c} 40 \\ \mathbf{Z r} \\ 91.22 \end{array}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \mathbf{M o} \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \text { Tc } \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \text { Ru } \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{array}{\|c} 47 \\ \mathbf{A g} \\ 107.87 \end{array}$	$\begin{gathered} 48 \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{array}{\|c} 54 \\ \mathbf{X e} \\ 131.30 \end{array}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.34 \end{gathered}$	$\begin{array}{\|c\|} 57 \dagger \\ \text { La } \\ 138.91 \end{array}$	$\begin{array}{\|c} 72 \\ \mathbf{H f} \\ 178.49 \end{array}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \mathbf{O s} \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{array}{\|c} 79 \\ \mathbf{A u} \\ 196.97 \end{array}$	$\begin{array}{\|c} 80 \\ \mathbf{H g} \\ 200.59 \end{array}$	$\begin{gathered} 81 \\ \mathbf{T l} \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \text { Rn } \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$															
		\dagger	$\begin{array}{\|c} 58 \\ \mathrm{Ce} \\ 140.12 \end{array}$	$\begin{gathered} 59 \\ \text { Pr } \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ 146.92 \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.35 \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.92 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \text { Tm } \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$	
		\ddagger	$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a} \\ 231.04 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ (237) \end{gathered}$	$\begin{gathered} 94 \\ \text { Pu } \\ (242) \end{gathered}$	$\begin{gathered} 95 \\ \mathbf{A m} \\ (243) \end{gathered}$	$\begin{gathered} 96 \\ \text { Cm } \\ (247) \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ (251) \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ (254) \end{gathered}$	$\begin{gathered} 100 \\ \text { Fm } \\ (257) \end{gathered}$	$\begin{gathered} 101 \\ \text { Md } \\ (258) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ (260) \end{gathered}$	

1. Which coefficients would balance this equation?

$$
\mathrm{MnO}{2}+_\mathrm{HCl} \rightarrow _\mathrm{MnCl}_{2}+_\mathrm{Cl}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

	$\mathbf{M n O}_{2}$	$\mathbf{H C l}$	$\mathbf{M n C l}_{2}$	$\mathbf{C l}_{2}$	$\mathbf{H}_{\mathbf{2}} \mathbf{O}$
	1	2	1	1	1
A.	1	3	1	1	1
	1	4	1	1	2
C.	1	4	1	2	2
	1				

2. What volume of carbon dioxide, in dm^{3} under standard conditions, is formed when 7.00 g of ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}, M_{\mathrm{r}}=28.1\right)$ undergoes complete combustion?
A. $\frac{22.4 \times 28.1}{7.00}$
B. $\frac{22.4 \times 7.00}{28.1}$
C. $\frac{2 \times 22.4 \times 28.1}{7.00}$
D. $\frac{2 \times 22.4 \times 7.00}{28.1}$
3. What will be the concentration of sulfate ions in $\mathrm{mol} \mathrm{dm}^{-3}$ when 0.20 mol of $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2}$ is dissolved in water to give $100 \mathrm{~cm}^{3}$ of aqueous solution?
A. 0.2
B. 1.0
C. 2.0
D. 4.0
4. The volume of an ideal gas at $27.0^{\circ} \mathrm{C}$ is increased from $3.00 \mathrm{dm}^{3}$ to $6.00 \mathrm{dm}^{3}$. At what temperature, in ${ }^{\circ} \mathrm{C}$, will the gas have the original pressure?
A. 13.5
B. 54.0
C. 327
D. 600
5. Which gives the correct order of these processes in a mass spectrometer?
A. ionization deflection acceleration
B. ionization acceleration deflection
C. acceleration ionization deflection
D. deflection acceleration ionization
6. Between which ionization energies of boron will there be the greatest difference?
A. Between 1st and 2nd ionization energies
B. Between 2nd and 3rd ionization energies
C. Between 3rd and 4th ionization energies
D. Between 4th and 5th ionization energies
7. What happens when sodium is added to water?
I. A gas is evolved
II. The temperature of the water increases
III. A clear, colourless solution is formed
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
8. Which species has the largest radius?
A. Cl^{-}
B. K
C. Na^{+}
D. K^{+}
9. Which process is responsible for the colour of a transition metal complex?
A. The absorption of light when electrons move between s orbitals and d orbitals
B. The emission of light when electrons move between s orbitals and d orbitals
C. The absorption of light when electrons move between different d orbitals
D. The emission of light when electrons move between different d orbitals
10. What is the correct order if the compounds are arranged in order of increasing boiling point?
A. $\mathrm{CH}_{4}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{SiH}_{4}<\mathrm{CH}_{3} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{OH}<\mathrm{CH}_{4}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{SiH}_{4}$
C. $\mathrm{CH}_{3} \mathrm{OH}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{SiH}_{4}<\mathrm{CH}_{4}$
D. $\mathrm{CH}_{4}<\mathrm{SiH}_{4}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{OH}$
11. What is the bond angle in the $\mathrm{H}_{3} \mathrm{O}^{+}$ion?
A. 104°
B. 107°
C. 109°
D. 120°
12. Which compound does not form hydrogen bonds between its molecules?
A. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{COOH}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
13. How many atoms is each carbon directly bonded to in its allotropes?
A.
B.
C.

Diamond	Graphite	\mathbf{C}_{60} fullerene
3	3	3
4	3	3
4	3	4
4	4	3

14. What is the type of hybridization of the silicon and oxygen atoms in silicon dioxide?
A.

Silicon	Oxygen
sp^{3}	sp^{3}
sp^{3}	sp^{2}
sp^{2}	sp^{3}
sp^{2}	sp^{2}

15. In a reaction that occurs in 50 g of aqueous solution, the temperature of the reaction mixture increases by $20^{\circ} \mathrm{C}$. If 0.10 mol of the limiting reagent is consumed, what is the enthalpy change (in $\mathrm{kJ} \mathrm{mol}^{-1}$) for the reaction? Assume the specific heat capacity of the solution $=4.2 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.
A. $-0.10 \times 50 \times 4.2 \times 20$
B. $-0.10 \times 0.050 \times 4.2 \times 20$
C. $\frac{-50 \times 4.2 \times 20}{0.10}$
D. $\frac{-0.050 \times 4.2 \times 20}{0.10}$
16. Use the average bond enthalpies below to calculate the enthalpy change, in kJ , for the following reaction.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

Bond	Bond energy / $\mathbf{k J ~ m o l}^{\mathbf{1}}$
H-H	440
I-I	150
H-I	300

A. +290
B. +10
C. -10
D. -290
17. Which ionic compound has the most endothermic lattice enthalpy?
A. NaCl
B. KCl
C. NaF
D. KF
18. Which change leads to an increase in entropy?
A. $\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~s})$
B. $\quad \mathrm{SF}_{6}(\mathrm{~g}) \rightarrow \mathrm{SF}_{6}(\mathrm{l})$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
D. $\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{NaCl}(\mathrm{aq})$
19. Hydrochloric acid is reacted with large pieces of calcium carbonate, the reaction is then repeated using calcium carbonate powder. How does this change affect the activation energy and the collision frequency?
A.

Activation energy	Collision frequency
increases	increases
stays constant	increases
increases	stays constant
stays constant	stays constant

20. Two species, P and Q , react together according to the following equation.

$$
\mathrm{P}+\mathrm{Q} \rightarrow \mathrm{R}
$$

The accepted mechanism for this reaction is

$$
\begin{array}{ll}
\mathrm{P}+\mathrm{P} \rightleftharpoons \mathrm{P}_{2} & \text { fast } \\
\mathrm{P}_{2}+\mathrm{Q} \rightarrow \mathrm{R}+\mathrm{P} & \text { slow }
\end{array}
$$

What is the order with respect to P and Q ?
A.

\mathbf{P}	\mathbf{Q}
1	1
1	2
2	1
2	2

21. The activation energy of a reaction may be determined by studying the effect of a particular variable on the reaction rate. Which variable must be changed?
A. pH
B. Concentration
C. Surface area
D. Temperature
22. An increase in temperature increases the amount of chlorine present in the following equilibrium.

$$
\mathrm{PCl}_{5}(\mathrm{~s}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

What is the best explanation for this?
A. The higher temperature increases the rate of the forward reaction only.
B. The higher temperature increases the rate of the reverse reaction only.
C. The higher temperature increases the rate of both reactions but the forward reaction is affected more than the reverse.
D. The higher temperature increases the rate of both reactions but the reverse reaction is affected more than the forward.
23. Which affects the equilibrium vapour pressure of a liquid in a sealed container, assuming that there is always some of the liquid present?
A. The temperature of the liquid
B. The surface area of the liquid
C. The volume of the liquid
D. The volume of the container
24. According to the Brønsted-Lowry theory, how does each species act in the equilibrium below?

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{2}^{+}+\mathrm{HSO}_{4}^{-}
$$

A.

$\mathbf{C H}_{3} \mathbf{C O O H}$	$\mathbf{H}_{2} \mathbf{S O}_{4}$	$\mathbf{C H}_{3} \mathbf{C O O H}_{2}{ }^{+}$	$\mathbf{H S O}_{4}{ }^{-}$
acid	base	base	acid
acid	base	acid	base
base	acid	base	acid
base	acid	acid	base

25. If $20 \mathrm{~cm}^{3}$ samples of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of the acids below are taken, which acid would require a different volume of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide for complete neutralization?
A. Nitric acid
B. Sulfuric acid
C. Ethanoic acid
D. Hydrochloric acid
26. Which mixture of acid and alkali would produce a buffer solution?

	Acid	Alkali
A.	$40 \mathrm{~cm}^{3} 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$	$60 \mathrm{~cm}^{3} 0.1 \mathrm{moldm}^{-3} \mathrm{NaOH}$
B.	$60 \mathrm{~cm}^{3} 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$	$40 \mathrm{~cm}^{3} 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$
C.	$40 \mathrm{~cm}^{3} 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$	$60 \mathrm{~cm}^{3} 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{3}$
D.	$60 \mathrm{~cm}^{3} 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$	$40 \mathrm{~cm}^{3} 0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{3}$

27. Which aqueous solution would have a $\mathrm{pH}>7$?
A. Sodium sulfate
B. Ammonium nitrate
C. Sodium ethanoate
D. Aluminium nitrate
28. Which indicator would be the most appropriate for titrating aqueous ethylamine, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$, with nitric acid, HNO_{3} ?
A. Bromophenol blue $\left(\mathrm{p} K_{\mathrm{a}}=4.1\right)$
B. Bromothymol blue $\left(\mathrm{p} K_{\mathrm{a}}=7.3\right)$
C. Phenol red $\left(\mathrm{p} K_{\mathrm{a}}=8.0\right)$
D. Thymolphthalein $\left(\mathrm{p} K_{\mathrm{a}}=10.0\right)$
29. Which compound contains nitrogen with an oxidation number of +3 ?
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. HNO_{3}
C. $\mathrm{N}_{2} \mathrm{O}_{4}$
D. KNO_{2}
30. In the electrolytic cell shown, at which electrode will chlorine form, and what is the process taking place there?

A.

Electrode	Process
P	reduction
Q	reduction
P	oxidation
Q	oxidation

31. Which are necessary conditions for the standard hydrogen electrode to have an E^{\ominus} of exactly zero?
I. \quad Temperature $=298 \mathrm{~K}$
II. $\left[\mathrm{H}^{+}\right]=1 \mathrm{moldm}^{-3}$
III. $\left[\mathrm{H}_{2}\right]=1 \mathrm{~mol} \mathrm{dm}^{-3}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
32. How do the products compare at each electrode when aqueous $1 \mathrm{~mol} \mathrm{dm}^{-3}$ magnesium bromide and molten magnesium bromide are electrolysed?

$$
\begin{array}{rlr}
& & \\
\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{E}^{-} / \mathbf{V} \\
\frac{1}{2} \mathrm{Br}_{2}(\mathrm{l})+\mathrm{e}^{-} & \rightleftharpoons & \rightleftharpoons \mathrm{Br}^{-}(\mathrm{aq}) \\
& +2.37 \\
+1.07 \\
\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} & \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & +1.23
\end{array}
$$

A.

Positive electrode (Anode)	Negative electrode (Cathode)
same	same
same	different
different	same
different	different

33. How many structural isomers exist with the formula $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}_{3}$?
A. 3
B. 4
C. 5
D. 6
34. Which reaction occurs via a free-radical mechanism?
A. $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$
B. $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$
C. $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}+\mathrm{OH}^{-} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}+\mathrm{I}^{-}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CI}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{HI}$
35. Which substance is produced by the reaction of hydrogen with a vegetable oil?
A. Margarine
B. Nylon
C. Polypropene
D. Soap
36. Propene is converted to propanone in a two stage process.

$$
\text { Propene } \rightarrow \mathrm{X} \rightarrow \text { Propanone }
$$

What is the formula of compound X ?
A. $\mathrm{CH}_{3} \mathrm{CHBrCH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
C. $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
37. Which compound could rotate the plane of polarization of polarized light?
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHClCH}_{3}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$
38. What is the name of the ester formed when $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{OH}$ react together?
A. Ethyl methanoate
B. Methyl ethanoate
C. Propyl methanoate
D. Methyl propanoate
39. Which formula represents a polyamide?
A. $\left(\mathrm{CH}_{2}-\mathrm{CHCl}\right)_{n}$
B. $\left(-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}-\mathrm{CO}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CO}\right)_{n}$
C. $\left(\mathrm{CF}_{2}-\mathrm{CF}_{2}\right)_{\mathrm{n}}$
D.

40. Which are likely to be reduced when an experiment is repeated a number of times?
A. Random errors
B. Systematic errors
C. Both random and systematic errors
D. Neither random nor systematic errors

