

CHEMISTRY HIGHER LEVEL PAPER 1

Tuesday 11 November 2008 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.

0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)	
7		9 F 19.00	17 Cl 35.45	35 Br 79.90	53 I 126.90	85 At (210)	
9		8 O 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)	
w		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98	
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19	
m		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37	
				30 Zn 65.37	48 Cd 112.40	80 Hg 200.59	
ole				29 Cu 63.55	47 Ag 107.87	79 Au 196.97	
The Periodic Table				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09	
Perio				27 Co 58.93	45 Rh 102.91	77 Ir 192.22	
The				26 Fe 55.85	44 Ru 101.07	76 Os 190.21	
				25 Mn 54.94	43 Tc 98.91	75 Re 186.21	
	Number	Element omic Mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85	
	Atomic Number	Element Atomic Mass		23 V 50.94	41 Nb 92.91	73 Ta 180.95	
				22 Ti 47.90	40 Zr 91.22	72 Hf 178.49	
				21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)
7		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)
-	1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)

71	103
Lu	Lr
174.97	(260)
70	102
Yb	No
173.04	(259)
69	101
Tm	Md
168.93	(258)
68 Er 167.26	100 Fm (257)
67	99
Ho	Es
164.93	(254)
66	98
Dy	Cf
162.50	(251)
65	97
Tb	Bk
158.92	(247)
64	96
Gd	Cm
157.25	(247)
63 Eu 151.96	95 Am (243)
62	94
Sm	Pu
150.35	(242)
61	93
Pm	Np
146.92	(237)
60	92
Nd	U
144.24	238.03
59	91
Pr	Pa
140.91	231.04
58	90
Ce	Th
140.12	232.04
+-	++

- 1. Analytical chemists can detect amounts of amino acids as small as 2.0×10^{-21} mol of molecules. How many molecules does this represent?
 - A. 2.0×10^{-21}
 - B. 1.2×10^3
 - C. 6.0×10^{23}
 - D. 3.0×10^{44}
- 2. What amount of solute ions, in moles, is present in 50 cm³ of 0.10 mol dm⁻³ sodium hydroxide solution?
 - A. 2.5×10^{-3}
 - B. 5.0×10^{-3}
 - C. 1.0×10^{-2}
 - D. 5.0×10^{-2}
- 3. A blast furnace contains $1600 \,\mathrm{kg}$ of iron(III) oxide ($M_{\rm r}$ =160) and $144 \,\mathrm{kg}$ of carbon ($A_{\rm r}$ =12). Assuming that they react according to the following equation:

$$Fe_2O_3(s) + 3C(s) \rightarrow 2Fe(s) + 3CO(g)$$

what is the limiting reagent and the maximum theoretical yield of iron?

	Limiting reagent	Maximum theoretical yield of iron / kg
A.	iron(III) oxide	560
B.	iron(III) oxide	1120
C.	carbon	224
D.	carbon	448

4. The first ionization energies of successive elements in the periodic table are shown below.

Which statements are correct?

- I. Elements E and M are in Group 0 of the periodic table.
- II. Atoms of elements G and O have the outer electron configuration ns².
- III. Atoms of elements B and J contain half-filled p orbitals.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

5. A representation of a mass spectrometer is shown below.

Which is the best description of the processes occurring at \mathbf{Q} , \mathbf{R} and \mathbf{S} when element X(g) is analyzed?

	Q	R	S
A.	electric field applied	$X(g) + e^- \rightarrow X^+(g) + 2e^-$	magnetic field applied
B.	magnetic field applied	electric field applied	$X(g) + e^- \rightarrow X^+(g) + 2e^-$
C.	$X(g) + e^- \rightarrow X^+(g) + 2e^-$	electric field applied	magnetic field applied
D.	$X(g) + e^- \rightarrow X^+(g) + 2e^-$	magnetic field applied	electric field applied

8808-6101 Turn over

6. The mass spectrum of a sample of an element is shown below.

-6-

- Which value is closest to the relative atomic mass of the element?
- A. 64.5
- B. 65.0
- C. 65.5
- D. 66.0
- 7. In what order are the elements listed in the periodic table?
 - A. In order of relative atomic mass
 - B. In order of reactivity
 - C. In order of nuclear charge
 - D. In order of electronegativity

8. The graph shows the trend in a physical property down group 7 in the periodic table.

What is the physical property?

- A. Atomic radius
- B. Electronegativity
- C. Density
- D. Melting point
- **9.** Which species can act as ligands with transition metal ions?
 - I. NH₃
 - II. Cl
 - III. CH₄
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

10.	Equal amounts of four substances are added to separate samples of 100 cm ³ of water.	Which solution
	has the highest pH?	

- A. NaCl
- B. AlCl₃
- C. PCl₃
- D. Cl₂
- 11. The table shows the boiling points of the hydrogen halides.

Compound	Boiling point / °C
HF	20
HCl	-85
HBr	-67
HI	-35

Which statement explains the higher boiling point of hydrogen fluoride?

- A. The covalent bond in hydrogen fluoride is stronger than those in the other hydrogen halides.
- B. There is strong hydrogen bonding between the hydrogen fluoride molecules.
- C. Fluorine is the most reactive element in group 7.
- D. Fluorine has the highest first ionization energy in group 7.
- 12. Which substance has the lowest electrical conductivity?
 - A. Al(s)
 - B. $Al_2O_3(1)$
 - C. KCl(aq)
 - D. HCl(g)

- **13.** Which bond has the lowest polarity?
 - A. C-H in methane, CH₄
 - B. C=O in carbon dioxide, CO₂
 - C. C-C in ethane, C_2H_6
 - D. C-C in ethanol, C₂H₅OH
- 14. What is the correct description of hybridization present in buta-1,3-diene, H₂C=CH-CH=CH₂?
 - A. sp
 - B. sp^2
 - C. sp and sp^2
 - D. sp^3 , sp^2 and sp
- 15. Which molecules contain a bond angle of 90°?
 - I. PF₅
 - II. SiCl₄
 - III. SF_6
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

16. 75 cm³ of an unknown gas has a mass of 0.18 g at a temperature of 25 °C and a pressure of 1 atm. Which is the correct expression for the molar mass, M, in g mol⁻¹ of the gas? (R = 8.3 J K⁻¹ mol⁻¹, 1 atm = 1.01×10⁵ Pa)

A.
$$M = \frac{0.18 \times 8.3 \times 25}{1 \times 75}$$

B.
$$M = \frac{75 \times 10^{-6} \times 8.3 \times 25}{1.01 \times 10^{5} \times 298}$$

C.
$$M = \frac{0.18 \times 8.3 \times 298}{1.01 \times 10^5 \times 75 \times 10^{-6}}$$

D.
$$M = \frac{1.01 \times 10^5 \times 75 \times 10^{-6}}{0.18 \times 8.3 \times 298}$$

17. The average bond enthalpy for the C–H bond is 412 kJ mol⁻¹. Which process has an enthalpy change closest to this value?

A.
$$CH_4(g) \rightarrow C(s) + 2H_2(g)$$

B.
$$CH_4(g) \rightarrow C(g) + 2H_2(g)$$

C.
$$CH_4(g) \rightarrow C(g) + 4H(g)$$

D.
$$CH_4(g) \rightarrow CH_3(g) + H(g)$$

- 18. A reaction has a positive ΔH^{\ominus} and a negative ΔS^{\ominus} value. Which statement about this reaction is correct?
 - A. It is not spontaneous at any temperature.
 - B. It is spontaneous at all temperatures.
 - C. It is spontaneous only at low temperatures.
 - D. It is spontaneous only at high temperatures.

19.	When 50 cm ³ of 1.0 mol dm ⁻³ nitric acid solution, HNO ₃ (aq), is added to 50 cm ³ of 1.0 mol dm ⁻³
	potassium hydroxide solution, KOH(aq), the temperature of the mixture increases by 6.4°C.
	What will be the temperature change when 25 cm ³ of each of these solutions are mixed together?

- A. 1.6°C
- B. 3.2°C
- C. 6.4°C
- D. 12.8°C
- 20. Which features of a positive ion lead to a higher lattice enthalpy in its compounds?
 - I. A higher charge on the ion
 - II. A smaller ionic radius
 - III. A lower first ionization energy of the metal to form the ion
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

8808-6101 Turn over

21. This reaction was used in flash photography:

$$3Mg(s) + KClO_3(s) \rightarrow 3MgO(s) + KCl(s)$$

Relevant enthalpy changes of formation values are shown below.

Compound	$\Delta H_{\rm f}^{\ominus} / \text{kJ mol}^{-1}$
KClO ₃ (s)	-391
MgO(s)	-602
KCl(s)	-437

What is the enthalpy change, in kJ, of this reaction?

- A. -1852
- B. -648
- C. +740
- D. +1760

22. The graph below shows how the concentration of X changes with time during the following reaction:

Which graph shows the change in concentration of Y during the same time period?

A.

B.

C.

D.

$$k = Ae^{\frac{-E_a}{RT}}$$

Which plot gives a straight line graph?

	Vertical axis	Horizontal axis
A.	k	$\frac{1}{T}$
B.	k	$\ln \frac{1}{T}$
C.	ln k	$\ln \frac{1}{T}$
D.	ln k	$\frac{1}{T}$

24. Nitrogen dioxide can react with carbon monoxide in the exhaust gases of car engines:

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

The following mechanism has been proposed:

$$NO_2(g) + NO_2(g) \rightarrow N_2O_4(g)$$
 slow

$$\mathrm{N_2O_4(g)} + \mathrm{CO(g)} \rightarrow \mathrm{NO_2(g)} + \mathrm{CO_2(g)} + \mathrm{NO(g)} \qquad \qquad \textit{fast}$$

What is the rate equation for this mechanism?

A. Rate =
$$k [NO_2(g)] [CO(g)]$$

B. Rate =
$$k [NO_2(g)]^2$$

C. Rate =
$$k [N_2O_4(g)] [CO(g)]$$

D. Rate =
$$k [NO_2(g)]^2 [CO(g)]$$

- -15-
- **25.** The graph below shows how the concentrations of the reactant and product in a reversible reaction change with time.

When is the reaction at equilibrium?

- I. Time = 10 s
- II. Time = 20 s
- III. Time = 55 s
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

26. Liquid bromine and its vapour are at equilibrium inside a sealed container:

$$Br_2(l) \rightleftharpoons Br_2(g)$$

-16-

Which change increases the equilibrium concentration of bromine vapour?

- A. Adding more liquid bromine
- B. Removing some liquid bromine
- C. Decreasing the volume of the container
- D. Increasing the temperature
- **27.** The equation for a reversible process can be represented in two ways:

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

$$K_{\rm cl}$$

$$HI(g) \rightleftharpoons \frac{1}{2}H_2(g) + \frac{1}{2}I_2(g)$$

$$K_{c2}$$

What is the relationship between the equilibrium constants K_{c1} and K_{c2} ?

A.
$$K_{c1} = K_{c2}$$

B.
$$K_{c1} = \frac{1}{2K_{c2}}$$

C.
$$K_{c1} = \frac{1}{2K_{c2}^2}$$

D.
$$K_{c1} = \frac{1}{K_{c2}^2}$$

- **28.** Which combinations form buffer solutions?
 - I. $50 \text{ cm}^3 \text{ of } 0.1 \text{ mol dm}^{-3} \text{ CH}_3\text{COOH}(aq) + 25 \text{ cm}^3 \text{ of } 0.1 \text{ mol dm}^{-3} \text{ NaOH}(aq)$
 - II. $50 \text{ cm}^3 \text{ of } 0.1 \text{ mol dm}^{-3} \text{ CH}_3 \text{COOH} (\text{aq}) + 50 \text{ cm}^3 \text{ of } 0.1 \text{ mol dm}^{-3} \text{ NaOH} (\text{aq})$
 - III. $50 \text{ cm}^3 \text{ of } 0.1 \text{ mol dm}^{-3} \text{ CH}_3\text{COOH}(\text{aq}) + 50 \text{ cm}^3 \text{ of } 0.1 \text{ mol dm}^{-3} \text{ CH}_3\text{COONa}(\text{aq})$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

Turn over 8808-6101

C.

D.

 Mn_2O_3

MnSO₄

- **33.** Which statement about the electrolysis of molten sodium bromide is correct?
 - A. Bromide ions lose electrons at the negative electrode.
 - B. Bromide ions gain electrons at the positive electrode.
 - C. Bromide ions gain electrons at the negative electrode.
 - D. Bromide ions move even if there is no current.
- **34.** What is the coefficient for H⁺ in the following equation?

$$3Cu\left(s\right) + {_\,NO_{_{3}}^{_{}}}(aq) + {_\,H^{_{}^{+}}}(aq) \to {_\,Cu^{^{2+}}}(aq) + {_\,NO\left(g\right)} + {_\,H_{_{2}}}O\left(l\right)$$

- A. 4
- B. 8
- C. 12
- D. 16
- **35.** Which conditions apply to the standard hydrogen electrode?
 - I. Hydrogen at a pressure of 1.01×10^5 Pa (1 atm)
 - II. Hydrogen at a temperature of 298 K
 - III. $1.00 \text{ mol dm}^{-3} \text{ H}_2\text{SO}_4(\text{aq})$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- **36.** Which of the following can form an addition polymer?
 - A. Alanine (2-aminopropanoic acid)
 - B. Butane
 - C. But-2-ene
 - D. 1,2-dichlorobutane
- 37. Which compound, when hydrogenated, gives a product with a chiral centre?
 - A. $CH_2 = CH_2$
 - B. $CH_3CBr = CH_2$
 - C. $CH_3CH_2CBr = CH_2$
 - D. $CH_3CH_2C(CH_3)=CH_2$
- **38.** Which statement about the reactions between halogenoalkanes and aqueous sodium hydroxide is correct?

-19-

- A. The reactions involve the homolytic fission of the carbon-halogen bond.
- B. Chloroalkanes react faster than iodoalkanes.
- C. The reactions of primary halogenoalkanes generally involve a two-step mechanism.
- D. Tertiary halogenoalkanes generally react by a S_N1 mechanism.

Identify the organic compound.

- A. CH₃CH₂CH₃
- B. CH₂OHCH₂OH
- C. CH₃CH₂OH
- D. CH₃CH₂Cl
- **40.** Which products are formed by the dehydration of butan-2-ol?
 - I. butane
 - II. but-1-ene
 - III. but-2-ene
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III