22086107

CHEMISTRY

HIGHER LEVEL

PAPER 1

Thursday 8 May 2008 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
The Periodic Table

1	2											3	4	5	6	7	0
$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number Element Atomic Mass													$\begin{gathered} 2 \\ \mathrm{He} \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathbf{B e} \\ 9.01 \end{gathered}$											$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} { }^{6} \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \end{gathered}$	$\begin{array}{\|c} 21 \\ \mathbf{S c} \\ 44.96 \end{array}$	$\begin{array}{\|c} 22 \\ \mathrm{Ti} \\ 47.90 \end{array}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \text { Mn } \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \text { Fe } \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \text { Ga } \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \text { Ge } \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \text { Rb } \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \mathbf{M o} \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \text { Tc } \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{array}{\|c} 47 \\ \mathbf{A g} \\ 107.87 \end{array}$	$\begin{gathered} 48 \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{array}{\|c} 52 \\ \text { Te } \\ 127.60 \end{array}$	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.34 \end{gathered}$	$\begin{array}{\|c\|} 57 \dagger \\ \text { La } \\ 138.91 \end{array}$	$\begin{array}{\|c} 72 \\ \mathbf{H f} \\ 178.49 \end{array}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \mathbf{O s} \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{array}{\|c} 79 \\ \mathbf{A u} \\ 196.97 \end{array}$	$\begin{array}{\|c} 80 \\ \mathbf{H g} \\ 200.59 \end{array}$	$\begin{gathered} 81 \\ \mathbf{T l} \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathrm{Ra} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$															
		\dagger	$\begin{array}{\|c} 58 \\ \mathrm{Ce} \\ 140.12 \end{array}$	$\begin{gathered} 59 \\ \text { Pr } \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ 146.92 \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.35 \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \text { Tb } \\ 158.92 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \text { Tm } \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$	
		*	$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a} \\ 231.04 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ (237) \end{gathered}$	$\begin{gathered} 94 \\ \text { Pu } \\ (242) \end{gathered}$	$\begin{gathered} 95 \\ \mathbf{A m} \\ (243) \end{gathered}$	$\begin{gathered} 96 \\ \text { Cm } \\ (247) \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ (251) \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ (254) \end{gathered}$	$\begin{gathered} 100 \\ \text { Fm } \\ (257) \end{gathered}$	$\begin{gathered} 101 \\ \text { Md } \\ (258) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ (260) \end{gathered}$	

1. How many molecules are present in a 9.0 g sample of water?
A. 0.5
B. 1.0
C. 6.0×10^{23}
D. 3.0×10^{23}
2. What is the coefficient for oxygen when this equation is balanced using the lowest whole number?

$$
\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}
$$

A. 4
B. 5
C. 9
D. 13
3. What is the maximum mass of iron that can be produced from the reduction of 80 tonnes of iron(III) oxide ($M_{r}=160$), based on this equation?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

A. 28 tonnes
B. 56 tonnes
C. 84 tonnes
D. 112 tonnes
4. Which species represent a pair of isotopes?

Species	Number of protons	Number of electrons	Number of neutrons
L	12	12	12
M	13	13	13
P	13	10	13
Q	12	12	14

A. L and M
B. L and P
C. $\quad \mathrm{P}$ and Q
D. L and Q
5. How many unpaired electrons are there in the Co^{2+} ion?
A. 7
B. 5
C. 3
D. 2
6. Which processes occur in the mass spectrometer?
I. Ionization by electron bombardment
II. Acceleration by a magnetic field
III. Deflection by a magnetic field
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
7. Which properties decrease in value when descending group 1?
I. Atomic radius
II. Ionization energy
III. Electronegativity
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
8. The ionization energies of three consecutive elements in the periodic table are 1680, 2080 and $494 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Which of the following shows the elements with these values?
A. $\mathrm{O} \quad \mathrm{F} \mathrm{Ne}$
B. F Ne Na
C. Ne Na Mg
D. $\mathrm{Na} \quad \mathrm{Mg} \quad \mathrm{Al}$
9. Which comparison of radii of atoms and ions is correct?
A. $\mathrm{Cl}^{-}>\mathrm{Cl}$
B. $\mathrm{H}^{+}>\mathrm{H}^{-}$
C. $\mathrm{Na}^{+}>\mathrm{Na}$
D. $\mathrm{Mg}^{2+}>\mathrm{Mg}^{+}$
10. Which trend is correct when the elements are considered from left to right across period 3 ?
A. The acidic character of the oxides decreases.
B. The electrical conductivity of the elements increases.
C. The bonding of the chlorides changes from ionic to covalent.
D. Electronegativity decreases.
11. Which substance will not conduct an electric current?
A. $\mathrm{C}(\mathrm{s})$ (graphite)
B. $\mathrm{NaF}(1)$
C. $\mathrm{CaO}(\mathrm{s})$
D. $\mathrm{KI}(\mathrm{aq})$
12. Which of the following liquids is non-polar?
A. Water
B. Hexane
C. Propanone
D. Ethanol
13. The following substances all contain a nitrogen to nitrogen bond: $\mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2} \mathrm{H}_{2}$. Which shows them in increasing order of nitrogen to nitrogen bond length (smallest first)?
A. $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2} \mathrm{H}_{2}, \mathrm{~N}_{2}$
B. $\mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{H}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4}$
C. $\mathrm{N}_{2} \mathrm{H}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2}$
D. $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{2}, \mathrm{~N}_{2} \mathrm{H}_{2}$
14. What is the bond angle in NO_{3}^{-}?
A. 107°
B. 109.5°
C. 120°
D. 180°
15. The temperature of $1 \mathrm{dm}^{3}$ of a gas is increased from $32^{\circ} \mathrm{C}$ to $64^{\circ} \mathrm{C}$ at constant pressure. What is the new volume in dm^{3} ?
A. 1.1
B. 1.3
C. 1.6
D. 2.0
16. Which change does not lead to an increase in entropy?
A. Mixing nitrogen and oxygen gases at room temperature
B. Cooling steam so that it condenses to water
C. Heating hexane to its boiling point
D. Dissolving sugar in water
17. The enthalpy changes for two reactions are shown below.

$$
\begin{array}{ll}
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) & \Delta H^{\ominus}=-300 \mathrm{~kJ} \\
2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) & \Delta H^{\ominus}=-800 \mathrm{~kJ}
\end{array}
$$

What is the enthalpy change for this reaction in kJ ?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

A. -200
B. -500
C. -1100
D. -1400
18. Which process is exothermic?
A. $\mathrm{Na}(\mathrm{s}) \rightarrow \mathrm{Na}(\mathrm{g})$
B. $\mathrm{Ca}(\mathrm{g}) \rightarrow \mathrm{Ca}^{+}(\mathrm{g})+\mathrm{e}^{-}$
C. $\operatorname{Br}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Br}^{-}(\mathrm{g})$
D. $\quad \mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{I}(\mathrm{g})$
19. Which equation represents the standard enthalpy of formation of calcium fluoride?
A. $\mathrm{Ca}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~g})$
B. $\mathrm{Ca}(\mathrm{s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~s})$
C. $\mathrm{Ca}^{2+}(\mathrm{g})+2 \mathrm{~F}^{-}(\mathrm{g}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~s})$
D. $\mathrm{Ca}^{2+}(\mathrm{s})+2 \mathrm{~F}^{-}(\mathrm{g}) \rightarrow \mathrm{CaF}_{2}(\mathrm{~s})$
20. $25 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$ is added to $25 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$. The temperature rise is $6^{\circ} \mathrm{C}$. Which reactants will also give a temperature rise of $6^{\circ} \mathrm{C}$?
A. $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ and $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$.
B. $\quad 50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ and $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$.
C. $50 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ and $50 \mathrm{~cm}^{3}$ of $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$.
D. $100 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ and $100 \mathrm{~cm}^{3}$ of $0.25 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$.
21. Which reaction is the most exothermic?
A. $\quad \mathrm{Li}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g}) \rightarrow \mathrm{LiF}(\mathrm{s})$
B. $\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{NaCl}(\mathrm{s})$
C. $\mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{O}^{2-}(\mathrm{g}) \rightarrow \mathrm{MgO}(\mathrm{s})$
D. $\quad \mathrm{Ca}^{2+}(\mathrm{g})+\mathrm{S}^{2-}(\mathrm{g}) \rightarrow \mathrm{CaS}(\mathrm{s})$
22. The table shows data for a reaction between X and Y.

Experiment	$[\mathrm{X}] \mathrm{mol} \mathrm{dm}^{-3}$	$[\mathrm{Y}] \mathrm{moldm}^{-3}$	Rate of reaction $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
1	0.4	0.24	1.2×10^{-4}
2	0.8	0.24	2.4×10^{-4}
3	0.4	0.12	3.0×10^{-5}

The overall order of reaction is:
A. 1
B. 2
C. 3
D. 4
23. Which units could be used for the rate of a chemical reaction?
A. $\mathrm{moldm}^{-3} \mathrm{~min}$
B. $\mathrm{mol}^{-1} \min ^{-1}$
C. $\mathrm{dm}^{3} \min$
D. $\mathrm{moldm}^{-3} \mathrm{~min}^{-1}$
24. $10 \mathrm{~cm}^{3}$ of liquid hexane is placed in a closed $1 \mathrm{dm}^{3}$ container at 298 K . Which change would increase the equilibrium vapour pressure of the hexane in the container?
A. Putting the container in a refrigerator
B. Adding $10 \mathrm{~cm}^{3}$ of hexane to the container
C. Reducing the volume of the container to $0.5 \mathrm{dm}^{3}$
D. Putting the container in a water bath at 308 K
25. Which change will increase the equilibrium concentration of sulfur trioxide in this reaction?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H^{\ominus}=\text { negative }
$$

A. Decreasing the concentration of oxygen
B. Increasing the pressure
C. Using a catalyst
D. Increasing the temperature
26. Which species act as Brønsted - Lowry bases in the following reactions?

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} \\
\mathrm{NH}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{OH}^{-}
\end{gathered}
$$

I. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
II. $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$
III. NH_{2}^{-}
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
27. The ionic product constant of water at $45^{\circ} \mathrm{C}$ is $4 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$. Which statement is correct about pure water at $45^{\circ} \mathrm{C}$?
A. $\mathrm{pH}=7$
B. $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
C. $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$
D. $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
28. A weak monoprotic acid is 10% dissociated in a solution of concentration $0.01 \mathrm{moldm}^{-3}$. What is the pH value of the solution?
A. 0.1
B. 1.0
C. 2.0
D. 3.0
29. Which change increases the pH of a solution from 3 to 6 ?
A. Doubling the $\left[\mathrm{H}^{+}\right]$
B. Halving the $\left[\mathrm{OH}^{-}\right]$
C. Decreasing the $\left[\mathrm{H}^{+}\right]$by a factor of 1000
D. Decreasing the $\left[\mathrm{OH}^{-}\right]$by a factor of 1000
30. Which pair of compounds, in aqueous solution, could be used to make a buffer solution?
A. $\mathrm{CH}_{3} \mathrm{COOH}$ and HCl
B. HCl and NaOH
C. HCl and $\mathrm{NH}_{4} \mathrm{Cl}$
D. HCOOH and NaOH
31. During the electrolysis of aqueous sulfuric acid, 1 g of hydrogen gas forms at the negative electrode. What mass in grams of oxygen forms at the positive electrode in the same time?
A. 4
B. 8
C. 16
D. 32
32. Which is the strongest oxidizing agent?
A. I_{2}
B. I^{-}
C. F_{2}
D. F^{-}
33. The following are standard electrode potentials.

$$
\begin{array}{ll}
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(\mathrm{~s}) & E^{\ominus}=-0.76 \mathrm{~V} \\
\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}(\mathrm{~s}) & E^{\ominus}=-1.18 \mathrm{~V}
\end{array}
$$

What is the E^{\ominus} for this reaction?

$$
\mathrm{Mn}(\mathrm{~s})+\mathrm{ZnSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MnSO}_{4}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s})
$$

A. -0.42 V
B. +0.42 V
C. -1.94 V
D. +1.94 V
34. Which compound cannot be easily oxidized using acidified potassium dichromate(VI) solution?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
35. In which reaction does hydrogen act as an oxidizing agent?
A. $\mathrm{Ca}+\mathrm{H}_{2} \rightarrow \mathrm{CaH}_{2}$
B. $\mathrm{F}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathrm{HF}$
C. $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}$
D. $\mathrm{O}_{2}+2 \mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
36. Which species cannot act as a nucleophile?
A. $\mathrm{H}_{2} \mathrm{O}$
B. NH_{3}
C. CN^{-}
D. CH_{4}
37. Which compounds show three main peaks in their ${ }^{1} \mathrm{H}$ NMR spectra?
I. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
II. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
III. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
38. Which halogenoalkane reacts most rapidly with silver nitrate solution to form a precipitate?
A. 1-bromobutane
B. 1-iodobutane
C. 2-bromo-2-methylpropane
D. 2-iodo-2-methylpropane
39. Which is the correct formula of 2,3-dichloro-2-methylpentane?
A. $\mathrm{CH}_{3} \mathrm{CCl}\left(\mathrm{CH}_{3}\right) \mathrm{CHClCH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CCl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CCl}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHClCHClCH}_{3}$
40. What type of reaction occurs when hexanedioic acid and 1,6 -diaminohexane react together to form nylon?
A. Addition
B. Condensation
C. Esterification
D. Substitution

