

CHEMISTRY HIGHER LEVEL PAPER 1

Thursday 10 May 2007 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.

							t		
0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)			
7		9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)		71 Lu 174.97	103
9		8 O 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)		70 Yb 173.04	102
w		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98		69 Tm 168.93	101
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19		68 Er 167.26	100
ю		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37		67 Ho 164.93	66
	·			30 Zn 65.37	48 Cd 112.40	80 Hg 200.59		66 Dy 162.50	86
ole				29 Cu 63.55	47 Ag 107.87	79 Au 196.97		65 Tb 158.92	97
lic Tal				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09		64 Gd 157.25	96
The Periodic Table				27 Co 58.93	45 Rh 102.91	77 Ir 192.22		63 Eu 151.96	95
The				26 Fe 55.85	44 Ru 101.07	76 Os 190.21		62 Sm 150.35	94
				25 Mn 54.94	43 Tc 98.91	75 Re 186.21		61 Pm 146.92	93
	Number	Element omic Mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85		60 Nd 144.24	92
	Atomic Number	Element Atomic Mass		23 V 50.94	41 Nb 92.91	73 Ta 180.95		59 Pr 140.91	91
	<u> </u>			22 Ti 47.90	40 Zr 91.22	72 Hf 178.49		58 Ce 140.12	06
				21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)	* -	<u> </u>
2		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)		
-	1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		

- 1. On complete combustion, a sample of a hydrocarbon compound produces 1.5 mol of carbon dioxide and 2.0 mol of water. What is the molecular formula of this hydrocarbon?
 - $A. C_2H_2$
 - B. C_2H_4
 - $C. C_3H_4$
 - D. C_3H_8
- When excess $BaCl_2(aq)$ was added to a sample of $Fe(NH_4)_2(SO_4)_2(aq)$ to determine the amount in moles of sulfate present, 5.02×10^{-3} mol of $BaSO_4$ was obtained. How many moles of sulfate ions and iron ions were in the sample of $Fe(NH_4)_2(SO_4)_2$?

	Amount of sulfate ions / moles	Amount of iron ions / moles
A.	5.02×10^{-3}	2.51×10^{-3}
B.	10.04×10^{-3}	5.02×10^{-3}
C.	2.51 × 10 ⁻³	5.02×10^{-3}
D.	10.04×10^{-3}	2.51×10^{-3}

3. What volume of 0.500 mol dm⁻³ sulfuric acid solution is required to react completely with 10.0 g of calcium carbonate according to the equation below?

$$CaCO_3(s) + H_2SO_4(aq) \rightarrow CaSO_4(aq) + H_2O(l) + CO_2(g)$$

- A. 100 cm^3
- B. 200 cm^3
- C. 300 cm³
- D. 400 cm³

4.		ansitio nent?	In metal ion X^{2+} has the electronic configuration [Ar]3d ⁹ . What is the atomic number of the
	A.	27	
	B.	28	
	C.	29	
	D.	30	
5.	Whi	ch stat	tements are correct for the emission spectrum of the hydrogen atom?
		I. II. III.	The lines converge at lower energies. Electron transitions to $n = 1$ are responsible for lines in the UV region. Lines are produced when electrons move from higher to lower energy levels.
	A.	I and	d II only
	B.	I and	d III only
	C.	II an	nd III only
	D.	I, II	and III
6.	Whi	ch stat	tement is correct for the halogen group?
	A.	Hali	de ions are all reducing agents, with iodide ions being the weakest.
	B.	Halo	ogens are all oxidizing agents, with chlorine being the strongest.
	C.	Chlo	oride ions can be oxidized to chlorine by bromine.

Iodide ions can be oxidized to iodine by chlorine.

D.

- I. The melting points decrease from $Li \rightarrow Cs$ for the alkali metals.
- II. The melting points increase from $F \rightarrow I$ for the halogens.
- III. The melting points decrease from $Na \rightarrow Ar$ for the period 3 elements.

-5-

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 8. The compound $[Co(NH_3)_5Br]SO_4$ is isomeric with the compound $[Co(NH_3)_5SO_4]Br$. What is the oxidation state of cobalt in these compounds?

	$\left[\mathrm{Co}\left(\mathrm{NH_{3}}\right)_{5}\mathrm{Br}\right]\mathrm{SO}_{4}$	$[Co(NH_3)_5SO_4]Br$
A.	+3	+3
B.	+2	+1
C.	+3	+2
D.	+2	+3

- **9.** When C₂H₄, C₂H₂ and C₂H₆ are arranged in order of **increasing** C–C bond length, what is the correct order?
 - A. C_2H_6 , C_2H_2 , C_2H_4
 - B. C_2H_4, C_2H_2, C_2H_6
 - $C. \quad C_2H_2, C_2H_4, C_2H_6$
 - D. C_2H_4, C_2H_6, C_2H_2

- **10.** Which compound contains **both** ionic and covalent bonds?
 - A. MgCl₂
 - B. HCl
 - C. H₂CO
 - D. NH₄Cl
- 11. When the species BF_2^+ , BF_3 and BF_4^- are arranged in order of **increasing** F B F bond angle, what is the correct order?
 - A. BF_3, BF_4^-, BF_2^+
 - B. BF_4^-, BF_3, BF_2^+
 - C. $BF_{2}^{+}, BF_{4}^{-}, BF_{3}$
 - D. BF_2^+ , BF_3 , BF_4^-
- **12.** Which molecule is square planar in shape?
 - A. XeO₄
 - B. XeF₄
 - C. SF₄
 - D. SiF₄

What is the hybridization of nitrogen atoms I, II, III and IV in the following molecules? 13.

	I	II	III	IV
A.	sp^2	sp^2	sp ³	sp ³
B.	sp ³	sp ³	sp ²	sp^2
C.	sp ²	sp ²	sp	sp
D.	sp ³	sp ³	sp	sp

- 1 mole of hydrogen, 2 moles of oxygen and 3 moles of carbon dioxide are placed in a closed container 14. at 298 K. What is the ratio of average kinetic energies of each gas under these conditions?
 - A. 1:2:3
 - В. 3:2:1
 - C. 1:1:1
 - D. 1:2:1
- 15. Consider the following reactions.

$$S(s) + 1\frac{1}{2}O_2(g) \rightarrow SO_3(g)$$
 $\Delta H^{\oplus} = -395 \text{ kJ mol}^{-1}$

$$\Delta H^{\oplus} = -395 \text{ kJ mol}^{-1}$$

$$SO_2(g) + \frac{1}{2}O_2(g) \to SO_3(g)$$
 $\Delta H^{\Theta} = -98 \text{ kJ mol}^{-1}$

$$\Delta H^{\oplus} = -98 \text{ kJ mol}^{-1}$$

What is the ΔH^{Θ} value (in kJ mol⁻¹) for the following reaction?

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

- A. -297
- В. +297
- C. -493
- +493 D.

- **16.** Which statement is correct for an endothermic reaction?
 - A. Bonds in the products are stronger than the bonds in the reactants.
 - B. Bonds in the reactants are stronger than the bonds in the products.
 - C. The enthalpy of the products is less than that of the reactants.
 - D. The reaction is spontaneous at low temperatures but becomes non-spontaneous at high temperatures.
- 17. Consider the following information.

Compound	$C_6H_6(1)$	$CO_2(g)$	H ₂ O(l)
$\Delta H_{\rm f}^{\ominus}$ / kJ mol ⁻¹	+49	-394	-286

$$C_6H_6(l) + 7\frac{1}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(l)$$

Which expression gives the correct value of the standard enthalpy change of combustion for benzene (l), in kJ mol⁻¹?

A.
$$12(-394) + 6(-286) - 2(49)$$

B.
$$12(394) + 6(286) - 2(-49)$$

C.
$$6(-394) + 3(-286) - (49)$$

D.
$$6(394) + 3(286) - (-49)$$

18. Which equation represents the lattice enthalpy of magnesium oxide?

A.
$$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$$

B.
$$Mg^{2+}(g) + O^{2-}(g) \to MgO(g)$$

C.
$$Mg^{2+}(g) + \frac{1}{2}O_2(g) \to MgO(s)$$

D.
$$Mg^{2+}(g) + O^{2-}(g) \to MgO(s)$$

19. At 25 °C, 100 cm³ of 1.0 mol dm⁻³ hydrochloric acid is added to 3.5 g of magnesium carbonate. If the sample of magnesium carbonate is kept constant, which conditions will **not** increase the initial rate of reaction?

	Volume of HCl / cm ³	Concentration of HCl / mol dm ⁻³	Temperature / °C
A.	200	1.0	25
B.	100	2.0	25
C.	100	1.0	35
D.	200	2.0	25

20. Consider the reaction

$$2I^{-}(aq) + H_{2}O_{2}(aq) + 2H^{+}(aq) \rightarrow I_{2}(aq) + 2H_{2}O(l)$$

In the presence of $S_2O_3^{2-}(aq)$ and starch solution, the time taken for a blue colour to form was observed at various reactant concentrations.

Experiment	[I ⁻] / mol dm ⁻³	$[\mathrm{H_2O_2}]$ / mol dm $^{-3}$	[H ⁺] / mol dm ⁻³	Time / s
1	0.10	0.12	0.01	25
2	0.05	0.12	0.01	50
3	0.10	0.06	0.01	100

What is the correct order with respect to I^- and H_2O_2 ?

	I-	$\mathrm{H_2O_2}$
A.	1	2
B.	1/2	<u>1</u> 4
C.	2	1
D.	2	4

- **21.** Which statement is correct with regard to the catalysed and uncatalysed pathways for a given reaction?
 - A. The enthalpy change of the catalysed reaction is less than the enthalpy change for the uncatalysed reaction.
 - B. The enthalpy change of the catalysed reaction is greater than the enthalpy change for the uncatalysed reaction.
 - C. The enthalpy change of the catalysed reaction is equal to the enthalpy change for the uncatalysed reaction.
 - D. The activation energy of the catalysed reaction is greater than the activation energy for the uncatalysed reaction.
- 22. Consider the following equilibrium reaction in a closed container at 350 °C.

$$SO_2(g) + Cl_2(g) \rightleftharpoons SO_2Cl_2(g)$$
 $\Delta H^{\ominus} = -85 \text{ kJ}$

Which statement is correct?

- A. Decreasing the temperature will increase the amount of $SO_2Cl_2(g)$.
- B. Increasing the volume of the container will increase the amount of SO₂Cl₂(g).
- C. Increasing the temperature will increase the amount of $SO_2Cl_2(g)$.
- D. Adding a catalyst will increase the amount of $SO_2Cl_2(g)$.
- **23.** A 1.0 dm³ reaction vessel initially contains 6.0 mol of **P** and 6.0 mol of **Q**. At equilibrium 4.0 mol of **R** is present. What is the value of K_c for the following reaction?

$$P(g) + Q(g) \rightleftharpoons R(g) + S(g)$$

- A. 0.11
- B. 0.25
- C. 0.44
- D. 4.00

- **24.** Solutions of hydrochloric acid (HCl (aq)) and ethanoic acid (CH₃COOH (aq)) of the same concentration reacted completely with 5.0 g of calcium carbonate in separate containers. Which statement is correct?
 - A. CH₃COOH (aq) reacted slower because it has a lower pH than HCl (aq).
 - B. A smaller volume of CO₂(g) was produced with CH₃COOH(aq) than with HCl(aq).
 - C. A greater volume of CO₂(g) was produced with CH₃COOH(aq) than with HCl(aq).
 - D. The same volume of CO₂(g) was produced with both CH₃COOH (aq) and HCl(aq).
- 25. Ammonia (NH₃) is a weak base in aqueous solution with an ionization constant K_b . What expression is equal to the ionization constant for the following reaction?

$$NH_4^+(aq) + H_2O(l) \rightleftharpoons NH_3(aq) + H_3O^+(aq)$$

- A. $\frac{K_{\rm w}}{K_{\rm a}}$
- B. $\frac{K_a}{K_w}$
- C. $\frac{K_{\rm w}}{K_{\rm h}}$
- D. $\frac{K_b}{K_w}$
- **26.** The pK_a values of four acids are as follows.

W 4.87

X 4.82

Y 4.86

Z 4.85

What is the correct order when these acids are arranged in order of **increasing** acid strength?

- A. X, Z, Y, W
- B. X, Y, Z, W
- C. W, Z, Y, X
- D. W, Y, Z, X

- 27. 10 cm³ of 0.01 mol dm⁻³ nitric acid (HNO₃) is diluted with 90 cm³ of water. What is the pH of the resulting solution?
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- **28.** A base of concentration 0.10 mol dm⁻³ is titrated with 25 cm³ of an acid of concentration 0.10 mol dm⁻³. Which base-acid pair would have the highest pH at the equivalence point?
 - A. NaOH (aq) and CH₃COOH (aq)
 - B. NaOH (aq) and HNO₃ (aq)
 - C. NH₃(aq) and HNO₃(aq)
 - D. NH₃(aq) and CH₃COOH (aq)
- **29.** Consider the following spontaneous reactions.

$$\begin{split} Fe(s) + Cu^{2+}(aq) &\to Fe^{2+}(aq) + Cu(s) \\ Cu(s) + 2Ag^{+}(aq) &\to Cu^{2+}(aq) + 2Ag(s) \\ Zn(s) + Fe^{2+}(aq) &\to Zn^{2+}(aq) + Fe(s) \end{split}$$

Which is the correct combination of strongest oxidizing agent and strongest reducing agent?

	Strongest oxidizing agent	Strongest reducing agent	
A.	Ag(s)	Zn(s)	
B.	Ag ⁺ (aq)	Zn(s)	
C.	Zn ²⁺ (aq)	Ag(s)	
D.	Zn(s)	Ag ⁺ (aq)	

- **30.** Which statement is correct?
 - A. Spontaneous redox reactions produce electricity in an electrolytic cell.
 - B. Electricity is used to carry out a non-spontaneous redox reaction in a voltaic cell.
 - C. Oxidation takes place at the negative electrode in a voltaic cell and the positive electrode in an electrolytic cell.
 - D. Oxidation takes place at the negative electrode in a voltaic cell and reduction takes place at the positive electrode in an electrolytic cell.
- **31.** Consider the standard electrode potentials of the following reactions:

$$\mathrm{Sn}^{4+}(aq) + 2e^{-} \rightarrow \mathrm{Sn}^{2+}(aq) + 0.15\mathrm{V}$$

$$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq) + 0.77V$$

What is the value of the cell potential (in volts) for the spontaneous reaction?

- A. +1.69
- B. +1.39
- C. +0.92
- D. +0.62
- 32. In the electrolysis of acidified water, if 8.4 cm³ of hydrogen gas is evolved, what volume of oxygen gas is evolved?
 - A. 4.2 cm^3
 - B. 8.4 cm³
 - C. 12.6 cm³
 - D. 16.8 cm³

- I. Charge on the metal ion
- II. Current
- III. Time
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

34. Nylon is a condensation polymer made up of hexanedioic acid and 1,6-diaminohexane. Which type of linkage is present in nylon?

-14-

- A. Amide
- B. Ester
- C. Amine
- D. Carboxyl

35. What is the IUPAC name of the following compound?

- A. 3,3,4-trimethylhexane
- B. 3,4,4-trimethylhexane
- C. 4-ethyl-3,4-dimethylpentane
- D. 2-ethyl-2,3-dimethylpentane

36. How many chiral carbon atoms are present in a molecule of glucose?

- A. 1
- B. 2
- C. 3
- D. 4

37. An organic compound X reacts with excess acidified potassium dichromate(VI) to form compound Y, which reacts with sodium carbonate to produce $CO_2(g)$.

What is a possible formula for compound **X**?

- A. CH₃CH₂COOH
- B. CH₃CH₂CH₂OH
- C. CH₃CH(OH)CH₃
- D. $(CH_3)_3COH$

38. What is the ratio of peak areas in the ¹H NMR spectrum of the following compound?

CH₃CH(CH₃)CH₂CH₃

- A. 3:1:3:2:3
- B. 3:2:3:1:3
- C. 3:1:3:5
- D. 6:1:2:3
- **39.** Which statement is correct with regard to a nucleophilic substitution reaction?
 - A. Tertiary halogenoalkanes react slower than primary halogenoalkanes.
 - B. The rate of hydrolysis is faster for CH₃CH₂CH₂Cl than for CH₃CH₂CH₂I.
 - C. Doubling the concentration of OH^- doubles the rate of the $S_{\rm N}2$ reaction but not the $S_{\rm N}1$ reaction.
 - D. Primary halogenoalkanes usually follow an $S_{\rm N}1$ mechanism while tertiary halogenoalkanes follow an $S_{\rm N}2$ mechanism.
- **40.** The mass spectrum of a molecule C_3H_6O shows major peaks at m/z values of 58, 43 and 15. Which is the most likely structural formula of this compound?
 - A. CH₃CH₂CHO
 - B. CH₃COCH₃
 - C. CH₃CH₂OCH₃
 - D. CH₃CH₂CH₂OH