

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI



## CHEMISTRY HIGHER LEVEL PAPER 1

Wednesday 8 November 2006 (afternoon)

1 hour

## INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.

| 0        | 2<br><b>He</b><br>4.00 | 10<br>Ne<br>20.18      | 18<br>Ar<br>39.95        | 36<br>Kr<br>83.80        | 54<br><b>Xe</b><br>131.30 | 86<br><b>Rn</b><br>(222)  |                          |                           |                           |
|----------|------------------------|------------------------|--------------------------|--------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|
| Г        |                        | 9<br>F<br>19.00        | 17<br>CI<br>35.45        | 35<br>Br<br>79.90        | 53<br>I<br>126.90         | 85<br>At<br>(210)         |                          | 71<br>Lu<br>174.97        | 103<br>Lr<br>(260)        |
| 6        |                        | 8<br>0<br>16.00        | 16<br>S<br>32.06         | 34<br>Se<br>78.96        | 52<br><b>Te</b><br>127.60 | 84<br><b>Po</b><br>(210)  |                          | 70<br><b>Yb</b><br>173.04 | 102<br>No<br>(259)        |
| <i>w</i> |                        | 7<br>N<br>14.01        | 15<br><b>P</b><br>30.97  | 33<br>As<br>74.92        | 51<br>Sb<br>121.75        | 83<br><b>Bi</b><br>208.98 |                          | 69<br><b>Tm</b><br>168.93 | 101<br>Md<br>(258)        |
| 4        |                        | 6<br>C<br>12.01        | 14<br>Si<br>28.09        | 32<br><b>Ge</b><br>72.59 | 50<br>Sn<br>118.69        | 82<br><b>Pb</b><br>207.19 |                          | 68<br>Er<br>167.26        | 100<br>Fm<br>(257)        |
| С        |                        | 5<br><b>B</b><br>10.81 | 13<br>Al<br>26.98        | 31<br><b>Ga</b><br>69.72 | 49<br><b>In</b><br>114.82 | 81<br><b>TI</b><br>204.37 |                          | 67<br><b>Ho</b><br>164.93 | 99<br>Es<br>(254)         |
|          |                        |                        |                          | 30<br>Zn<br>65.37        | 48<br>Cd<br>112.40        | 80<br><b>Hg</b><br>200.59 |                          | 66<br>Dy<br>162.50        | 98<br>Cf<br>(251)         |
| ole      |                        |                        |                          | 29<br>Cu<br>63.55        | 47<br>Ag<br>107.87        | 79<br>Au<br>196.97        |                          | 65<br><b>Tb</b><br>158.92 | 97<br>Bk<br>(247)         |
| lic Tal  |                        |                        |                          | 28<br>Ni<br>58.71        | 46<br><b>Pd</b><br>106.42 | 78<br><b>Pt</b><br>195.09 |                          | 64<br>Gd<br>157.25        | 96<br>Cm<br>(247)         |
| Period   |                        |                        |                          | 27<br>Co<br>58.93        | 45<br><b>Rh</b><br>102.91 | 77<br>Ir<br>192.22        |                          | 63<br>Eu<br>151.96        | 95<br>Am<br>(243)         |
| The      |                        |                        |                          | 26<br>Fe<br>55.85        | 44<br><b>Ru</b><br>101.07 | 76<br><b>Os</b><br>190.21 |                          | 62<br>Sm<br>150.35        | 94<br><b>Pu</b><br>(242)  |
|          |                        |                        |                          | 25<br>Mn<br>54.94        | 43<br><b>Tc</b><br>98.91  | 75<br><b>Re</b><br>186.21 |                          | 61<br><b>Pm</b><br>146.92 | 93<br>Np<br>(237)         |
|          | Number                 | <b>nent</b><br>c Mass  |                          | 24<br>Cr<br>52.00        | 42<br><b>Mo</b><br>95.94  | 74<br><b>W</b><br>183.85  |                          | 60<br>Nd<br>144.24        | 92<br>U<br>238.03         |
|          | Atomic ]               | <b>Eler</b><br>Atomic  |                          | 23<br>V<br>50.94         | 41<br>N <b>b</b><br>92.91 | 73<br><b>Ta</b><br>180.95 |                          | 59<br><b>Pr</b><br>140.91 | 91<br><b>Pa</b><br>231.04 |
|          |                        |                        | ı                        | 22<br><b>Ti</b><br>47.90 | 40<br>Zr<br>91.22         | 72<br>Hf<br>178.49        |                          | 58<br>Ce<br>140.12        | 90<br><b>Th</b><br>232.04 |
|          |                        |                        |                          | 21<br>Sc<br>44.96        | 39<br>Y<br>88.91          | 57 †<br>La<br>138.91      | 89 ‡<br>Ac<br>(227)      |                           | ++                        |
| 7        |                        | 4<br><b>Be</b><br>9.01 | 12<br><b>Mg</b><br>24.31 | 20<br><b>Ca</b><br>40.08 | 38<br>Sr<br>87.62         | 56<br><b>Ba</b><br>137.34 | 88<br><b>Ra</b><br>(226) |                           |                           |
| 1        | 1<br>H<br>1.01         | 3<br>Li<br>6.94        | 11<br>Na<br>22.99        | 19<br><b>K</b><br>39.10  | 37<br><b>Rb</b><br>85.47  | 55<br>Cs<br>132.91        | 87<br>Fr<br>(223)        |                           |                           |

# N06/4/CHEMI/HPM/ENG/TZ0/XX

- 1. A 4 g sample of sodium hydroxide, NaOH, is dissolved in water and made up to 500 cm<sup>3</sup> of aqueous solution. What is the concentration of the resulting solution?
  - A.  $0.1 \text{ mol } dm^{-3}$
  - B.  $0.2 \text{ mol } dm^{-3}$
  - C.  $0.5 \text{ mol } dm^{-3}$
  - D. 1.0 mol dm<sup>-3</sup>
- 2. Calcium carbonate decomposes on heating as shown below.

$$CaCO_3 \rightarrow CaO + CO_2$$

When 50 g of calcium carbonate are decomposed, 7 g of calcium oxide are formed. What is the percentage yield of calcium oxide?

- A. 7 %
- B. 25 %
- C. 50 %
- D. 75 %
- 3. Sodium reacts with water as shown below.

 $\_$  Na +  $\_$  H<sub>2</sub>O  $\rightarrow$   $\_$  NaOH +  $\_$  H<sub>2</sub>

What is the total of **all** the coefficients when the equation is balanced using the smallest possible whole numbers?

- A. 3
- B. 4
- C. 6
- D. 7

#### 4. What are *valence electrons*?

- A. Electrons in the energy level closest to the nucleus
- B. Electrons in the highest main energy level
- C. The number of electrons required to complete the highest main energy level
- D. The total number of electrons in the atom
- 5. What is the total number of electrons in p orbitals in an atom of iodine?
  - A. 5
  - B. 7
  - C. 17
  - D. 23
- 6. Why do the boiling points of the halogens increase down the group?
  - A. There is an increase in bond enthalpy.
  - B. There is an increase in bond polarity.
  - C. There is an increase in the strength of temporary dipoles.
  - D. There is a decrease in electronegativity.
- 7. Which properties are typical of d-block elements?
  - I. complex ion formation
  - II. catalytic behaviour
  - III. colourless compounds
  - A. I and II only
  - B. I and III only
  - C. II and III only
  - D. I, II and III

- 8. Which compound has the least covalent character?
  - A. SiO<sub>2</sub>
  - B. Na<sub>2</sub>O
  - C. MgCl<sub>2</sub>
  - D. CsF
- 9. Which compound dissolves in water to form a solution that does **not** conduct electricity?
  - A. HCl
  - B. NaCl
  - C. CH<sub>3</sub>CH<sub>2</sub>OH
  - D. CH<sub>3</sub>COOH
- 10. What intermolecular forces are present in gaseous hydrogen?
  - A. Hydrogen bonds
  - B. Covalent bonds
  - C. Dipole-dipole attractions
  - D. Van der Waals' forces
- 11. What is the shape of the species  $ICl_4^-?$ 
  - A. Pyramidal
  - B. Square planar
  - C. Tetrahedral
  - D. Octahedral

12. Identify the types of hybridization shown by the carbon atoms in the molecule

```
CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOH
```

- I. sp II. sp<sup>2</sup>
- III. sp<sup>3</sup>
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **13.** Which graph shows how the average kinetic energy of the particles varies with absolute temperature for an ideal gas?



- A.  $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$
- B.  $H_2O(s) \rightarrow H_2O(g)$
- C.  $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$
- D.  $2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$
- 15. Which statement is correct about the reaction shown?

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$
  $\Delta H = -196 \text{ kJ}$ 

- A. 196 kJ of energy are released for every mole of  $SO_2(g)$  reacted.
- B. 196 kJ of energy are absorbed for every mole of  $SO_2(g)$  reacted.
- C. 98 kJ of energy are released for every mole of  $SO_2(g)$  reacted.
- D. 98 kJ of energy are absorbed for every mole of  $SO_2(g)$  reacted.

#### 16. Which equation represents an exothermic process?

A. 
$$F^{-}(g) \rightarrow F(g) + e^{-}$$

- B.  $F_2(g) \rightarrow 2F(g)$
- C.  $Na(g) \rightarrow Na^+(g) + e^-$
- D.  $I_2(g) \rightarrow I_2(s)$

#### 17. Which statements are correct for all exothermic reactions?

- I. The enthalpy of the products is less than the enthalpy of the reactants.
- II. The sign of  $\Delta H$  is negative.
- III. The reaction is rapid at room temperature.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- 18. Which are characteristics of ions in an ionic compound with a large lattice enthalpy value?
  - A. Large ionic radius and high ionic charge
  - B. Small ionic radius and low ionic charge
  - C. Large ionic radius and low ionic charge
  - D. Small ionic radius and high ionic charge
- **19.** Some reactions occur in a series of steps. Which is the best description of the rate-determining step in a reaction mechanism?
  - A. The step involving the greatest number of reactant particles
  - B. The step involving the smallest number of reactant particles
  - C. The step releasing the most energy
  - D. The step with the highest activation energy

- **20.** The mechanism of a reaction is
- $\begin{array}{c} XY_2 + XY_2 \rightarrow X_2Y_4 \\ X_2Y_4 \rightarrow X_2 + 2Y_2 \\ X_2 + Y_2 \rightarrow 2XY \end{array}$

What is the overall equation for the reaction?

- A.  $X_2Y_4 \rightarrow 2XY_2$
- B.  $2XY_2 \rightarrow X_2 + 2Y_2$
- C.  $2XY_2 \rightarrow 2XY + Y_2$
- D.  $X_2Y_4 \rightarrow 2XY + Y_2$
- 21. Which reaction uses a homogeneous catalyst?
  - A. Iron in the Haber process
  - B. Nickel in the conversion of alkenes to alkanes
  - C. Acid in the formation of esters
  - D. Manganese oxide in the decomposition of hydrogen peroxide
- 22. Which changes cause an increase in the equilibrium yield of  $SO_3(g)$  in this reaction?

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \quad \Delta H^{\ominus} = -196 \text{ kJ}$$

- I. increasing the pressure
- II. decreasing the temperature
- III. adding oxygen
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

23. Iron(III) ions react with thiocyanate ions as follows.

 $Fe^{3+}(aq) + CNS^{-}(aq) \rightleftharpoons Fe(CNS)^{2+}(aq)$ 

What are the units of the equilibrium constant,  $K_{e}$ , for the reaction?

- A.  $mol dm^{-3}$
- B.  $mol^2 dm^{-6}$
- C.  $mol^{-1} dm^3$
- D.  $mol^{-2} dm^6$
- 24. Lime is added to a lake to neutralize the effects of acid rain. The pH value of the lake water rises from 4 to 7. What is the change in concentration of  $H^+$  ions in the lake water?
  - A. An increase by a factor of 3
  - B. An increase by a factor of 1000
  - C. A decrease by a factor of 3
  - D. A decrease by a factor of 1000
- **25.** Which solution has the lowest pH value?
  - A. Aluminium sulfate
  - B. Sodium nitrate
  - C. Potassium chloride
  - D. Sodium ethanoate

- 26. Which is a Brønsted-Lowry acid-base pair?
  - A.  $H_2O$  and  $O^{2-}$
  - B. CH<sub>3</sub>COOH and CH<sub>3</sub>COO<sup>-</sup>
  - C.  $NH_4^+$  and  $NH_2^-$
  - D.  $H_2SO_4$  and  $SO_4^{2-}$
- 27. Which neutralization reaction could use phenolphthalein ( $pK_a = 9.3$ ) and not methyl orange ( $pK_a = 3.7$ ) as an indicator?
  - A. NaOH (aq) and  $HNO_3(aq)$
  - B.  $NH_3(aq)$  and  $CH_3COOH(aq)$
  - C. NaOH(aq) and CH<sub>3</sub>COOH(aq)
  - D.  $NH_3(aq)$  and  $HNO_3(aq)$
- **28.** Water dissociates according to the equation

 $H_2O(l) \rightleftharpoons H^+(aq) + OH^-(aq)$   $\Delta H = +56 \text{ kJ}$ 

At 25 °C water has a pH of 7. Which of the following occurs when water is heated to 30 °C?

- A. It remains neutral and its pH decreases.
- B. It becomes acidic and its pH decreases.
- C. It remains neutral and its pH increases.
- D. It becomes acidic and its pH increases.
- 29. Which statement is correct for the electrolysis of a molten salt?
  - A. Positive ions move toward the positive electrode.
  - B. A gas is produced at the negative electrode.
  - C. Only electrons move in the electrolyte.
  - D. Both positive and negative ions move toward electrodes.

## **30.** Which are used for the electroplating of a metal spoon with copper?

- I. an electrolyte containing aqueous copper(II) ions
- II. a copper anode (positive electrode)
- III. a copper cathode (negative electrode)
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **31.** Consider these standard electrode potentials.

$$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq) \qquad E^{\ominus} = +0.15V$$
$$Cu^{+}(aq) + e^{-} \rightarrow Cu(s) \qquad E^{\ominus} = +0.52V$$

What is the standard cell potential when the two half-cells are connected?

- A. 0.67V
- B. -0.37V
- C. + 0.37V
- D. +0.67V
- 32. Which signs are correct for a spontaneous reaction occurring in a cell?

|    |               | r                    |
|----|---------------|----------------------|
|    | $E^{\ominus}$ | $\Delta G^{\ominus}$ |
| A. | +             | +                    |
| B. | +             | _                    |
| C. | _             | +                    |
| D. | _             | _                    |

- **33.** A sample of 0.5 mol dm<sup>-3</sup> copper(II) sulfate solution is electrolysed for 10 minutes. Which change would cause the biggest increase in the amount of copper deposited?
  - A. Increasing the concentration of the copper(II) sulfate solution by 10 %
  - B. Increasing the duration of electrolysis by 10 %
  - C. Increasing the surface area of the electrodes by 10 %
  - D. Increasing the temperature of the electrolyte by 10 %
- **34.** What is the total of all the coefficients in the balanced half-equation below?

 $\underline{H^{+}(aq)} + \underline{MnO_{4}^{-}(aq)} + \underline{e^{-}} \rightarrow \underline{Mn^{2+}(aq)} + \underline{H_{2}O(l)}$  19 17 14 12

**35.** Which can be made in one step from a primary alcohol?

- I. an aldehyde
- II. an alkene
- III. a ketone
- A. I and II only

A.

B.

C.

D.

- B. I and III only
- C. II and III only
- D. I, II and III

- **36.** Which pair of compounds can be used to prepare  $CH_3COOCH_3$ ?
  - A. Ethanol and methanoic acid
  - B. Methanol and ethanoic acid
  - C. Ethanol and ethanoic acid
  - D. Methanol and methanoic acid
- **37.** What is the reaction type when  $(CH_3)_3CBr$  reacts with aqueous sodium hydroxide to form  $(CH_3)_3COH$  and NaBr?
  - A. Addition
  - B. Elimination
  - $C. S_N 1$
  - $D. S_N 2$
- **38.** Which species is a free radical?
  - A. •CH<sub>3</sub>
  - B. <sup>+</sup>CH<sub>3</sub>
  - C. <sup>-</sup>CH<sub>3</sub>
  - D. :CH<sub>3</sub>

- **39.** Which compound is a tertiary halogenoalkane?
  - A.  $(CH_3CH_2)_2CHBr$
  - B.  $CH_3(CH_2)_3CH_2Br$
  - C. (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>CH<sub>2</sub>Br
  - D.  $CH_3CH_2C(CH_3)_2Br$
- **40.** Which species reacts most readily with propane?
  - A. Br<sub>2</sub>
  - B. Br•
  - C. Br<sup>-</sup>
  - D. Br<sup>+</sup>