M06/4/CHEMI/HP2/ENG/TZ0/XX/M+

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MARKSCHEME

May 2006

CHEMISTRY

Higher Level

Paper 2

17 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

SECTION A

1. (a)
$$C_{6}H_{12} + 9Q_{2} \rightarrow 6CQ_{2} + 6H_{2}Q;$$
 [1]
(b) (i) $(\Lambda H^{\circ} = \sum \Lambda H_{1}^{\circ} _{product} - \sum \Lambda H^{\circ} _{(reactants}))$
 $\Lambda H^{\circ} = (6 \times -394 + 6 \times -242) - (-43);$
 $\Lambda H^{\circ}_{c} = -3773/ - 3.8 \times 10^{3} (kJ mol^{-1});$ [2]
 $\Lambda ccept 2, 3 \text{ or } 4 \text{ sf.}$
 $\Lambda ward [I] for + 3773/ + 3.8 \times 10^{3} (kJ mol^{-1}).$
 $\Lambda llow ECF from (a) only if coefficients used.$
(ii) $\Delta S^{\circ} = (S_{1}^{\circ} - S_{1}^{\circ}) = (6 \times 189 + 6 \times 214) - (385 + 9 \times 205);$
 $\Delta S_{c}^{\circ} = 188 (1 K^{-1} mol^{-1});$ [2]
 $\Lambda ccept only 3 \text{ sf.}$
 $\Lambda ward [I] for - 188.$
 $\Lambda llow ECF from (a) only if coefficients used.$
(c) $(\Lambda G^{\circ}_{c} = \Lambda H^{\circ}_{c} - T \Lambda S^{\circ}_{c}) = -3800 - (298 \times 0.188);$
 $= -3900 \text{ kJ mol}^{-1}.$ [2]
 $\Lambda ccept - 3800 \text{ to } -3900.$
 $\Lambda ccept 2, 3 \text{ or } 4 \text{ sf.}$
 $\Lambda llow ECF from (b).$
 $Units needed for second mark.$
(d) spontaneous and ΔG° negative;
 $\Lambda llow ECF from (c).$
(c) $-1 \times \Delta H_{1} / 676;$
 $1 \times \Delta H_{2} / -394;$
 $2 \times \Lambda H_{3} / - 484;$
 $\Delta H_{4} = -202 (\text{ kJ mol}^{-1});$ [4]
 $\Lambda ccept alternative methods.$
 $Correct answers score [4].$ $\Lambda ward [3] for (+)202 \text{ or } (+)40 (kJ / kJ mol^{-1}).$

M06/4/CHEMI/HP2/ENG/TZ0/XX/M

2. $A_{\rm r}({\rm Tl}) = 203 \times 0.2952 + 205 \times 0.7048 / A_{\rm r}({\rm Tl}) = 204.41;$ (a) $A_{\rm r}({\rm Br}) = 79 \times 0.5069 + 81 \times 0.4931 / A_{\rm r}({\rm Br}) = 79.99;$ $M_r(\text{TlBr}_3) = 204.41 + 3 \times 79.99 = 444.38 / 444.37;$ [3] Correct answer scores [3]. Ignore units of g or g mol⁻¹. Apply ECF to M_r from A_r values. (b) M_r is an <u>average</u> value (because of the isotopes); each HBr molecule has its own value depending on which isotopes (of H or Br) it contains/OWTTE; [2] $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s^{2}4p^{6};$ (c) [1] Do not accept noble gas shortcut. No subscripts. $Mg^{2+};$ (d) [1] Al^{3+} , O^{2-} , Ne, Na⁺, F⁻, N³⁻; (e) [2] Award [2] for any three, [1] for any two. 3. $n(Fe_2O_3) = 30 \times 10^3 \div 159.7 / n(Fe_2O_3) = 188 \text{ mol};$ $n(C) = 5.0 \times 10^3 \div 12.01 / n(C) = 416 \text{ mol};$ Fe_2O_3 is the limiting reagent or implicit in calculation; $n(Fe) = 2 \times n(Fe_2O_3) = 2 \times 188 = 376 \text{ mol};$ $m(Fe) = 376 \times 55.85 = 21 \text{ kg};$ [5] Accept 2sf or 3sf, otherwise use -1(SF). Correct final answers score [5]. Allow ECF.

-7-

4. (a) (i) (a species that) gains electrons (from another species) / causes electron loss; [1]
(ii) changes by 3; reduced because its oxidation number decreased /+6→+3/6+→3+ / it has gained electrons; [2]
(b) (i) C₆H₈O₆→C₆H₆O₆+2H⁺+2e; [1]

(ii)
$$C_6H_8O_6 + 2Fe^{3+} \rightarrow C_6H_6O_6 + 2H^+ + 2Fe^{2+};$$
 [1]

5. (a) same <u>general</u> formula; successive members differ by CH₂; Do not allow elements or just "they". similar chemical properties; Allow same/constant. gradual change in physical properties; Do not allow change periodically. same functional group; Award [1] each for any two.

> (b) add bromine (water); alkanes – no change / stays or turns brown; Allow red-brown or any combination of brown, orange or yellow. alkenes – bromine (water) decolorizes; Do not allow clear or discoloured.

or

add (acidified) KMnO_4 ; alkanes – no change; alkenes – MnO_4^- decolorizes / brown / black; Do not accept addition of H_2 or HBr.

(c) butan-1-ol: butanal; butanoic acid;

butan-2-ol:

butanone;

2 methylpropan-2-ol: no oxidation; [4] Also accept correct structures. Where both name and structure given structure must be correct and name largely correct.

[2 max]

[3]

SECTION B

6.	(a)	K / F Exac Acce	$K_c = [SO_3]^2 \div [SO_2]^2 [O_2];$ etly as written. ept correct K_p expression.	[1]
	(b)	(i)	vanadium(V) oxide / (di)vanadium pentaoxide / V ₂ O ₅ /Pt; Allow just vanadium oxide but not incorrect formula.	[1]
		(ii)	catalyst does not affect the value of K_c ; forward and reverse rate increase <u>equally/by the same factor</u> ; catalyst increases the rate of the reaction; (by providing an alternative path for the reaction with) lower activation energy;	[4]
	(c)	more more <i>Do n</i>	e energetic collisions / more molecules have energy greater than activation energy; e frequent collisions; not accept more collisions without reference to time.	[2]
	(d)	(i)	shifts equilibrium position to the products/right; to the side with least <u>gas</u> molecules or moles / lower volume of gas;	[2]
		(ii)	shifts equilibrium position to the products/right; to compensate for loss of SO_3 / produce more SO_3 ;	[2]
	(e)	exotl K_{c} of OWT	hermic; decreases with increasing temperature / back reaction favoured / heat used up / TTE;	[2]
	(f)	n(SO n(O	$(D_2)_{\text{at equilibrium}} = 1.50 - 0.50 = 1.00 \text{ mol};$ $(2)_{\text{at equilibrium}} = 2.00 - 0.250 = 1.75 \text{ mol};$	
		[SO ₂ [SO ₃	$[Q_2] = 1.00 \div 1.50 = 0.667 \text{ mol dm}^{-3}, [O_2] = 1.75 \div 1.50 = 1.17 \text{ mol dm}^{-3}$ $[Q_3] = 0.500 \div 1.50 = 0.333 \text{ mol dm}^{-3};$	
		K _c = = Allow If 0.2 Awar	$= (0.333)^{2} \div 1.17 \times (0.667)^{2};$ = 0.213 dm ³ mol ⁻¹ /0.214 dm ³ mol ⁻¹ ; w ECF. 202 dm ³ mol ⁻¹ is given award [4], this is obtained by premature rounding. rd [5] for correct answer with units.	[5]

the greater the strength of the intermolecular forces the greater the enthalpy of (g) (i) vaporization/OWTTE; pentane has only van der Waals' forces between molecules; propanoic acid has H-bonding (as well as van der Waals' forces); [3]

(ii)

temperature

 1^{st} mark: graph goes upwards with T; 2^{nd} mark: curve as shown;

as temperature increases (more) molecules have enough energy to overcome intermolecular / attractive forces; [3]

;

7. (a)

; lone pairs on Xe required for the mark.

- 11 -

; square brackets and charge required for the mark.

Accept any combination of dots, crosses and lines. Penalise missing fluorine lone pairs once only.

(b) XeF_4

Square planar and 90°; PF_5 trigonal bipyramid and 90° and 120°; BF_4^- Tetrahedral and 109.5°/109°; Allow <u>clear</u> suitable diagrams instead of name. No ECF from (a).

(c) hybridization: mixing / merging of atomic orbitals; $N_2 - sp;$

 $N_2H_2 - sp^2;$ $N_2H_4 - sp^3;$ [4]

(d) σ bonds (result from the) overlapping of orbitals end to end / along inter-nuclear axis; π bonds (result from the) overlapping of parallel/sideways p orbitals; (single bonds) σ bonds only; (double bonds) have a σ bond and a π bond; [4] Suitable clear and labelled diagrams acceptable for all marks.

[3]

[3]

(e)	(i)	electron removed from higher energy level / further from nucleus / greater atomic radius;	
		increased repulsion by extra inner shell electrons / increased shielding effect;	[2]
	(ii)	$Mg^{2+}(g) \rightarrow Mg^{3+}(g) + e;$	
		(even though) valence electrons in the same shell/main energy level / Mg^{2+} has no gas configuration;	ble
		Mg has greater nuclear/core charge/more protons;	[3]
(f)	(i)	Mg has twice/more delocalized electrons as Na;	
		the ionic charge is twice as big/greater in Mg than Na;	
		sodium ion is larger than magnesium ion;	_
		attraction of ions and electrons is less in sodium/greater in magnesium; [3 Correct discussion of charge density gains 2^{nd} and 3^{rd} mark.	max]
		Award [1] each for any three.	
	(ii)	SO ₂ has (weak) intermolecular/van der Waals' force/dipole – dipole;	
		MgO has (strong) ionic bonds;	
		Ionic bonding is stronger than intermolecular attraction (OWTTE);	[3]

8. (a) (i) $pH = -log[H^+];$

(ii) curve should include the following: starting pH = 1; equivalence point: 25.0 cm³ of NaOH; pH at equivalence point = 7; pH to finish = 12 - 13;

-13 -

Penalise [1] if profile incorrect.

(iii) $K_a = 10^{-4.76} / 1.74 \times 10^{-5};$ $K_a = [H^+]^2 \div [CH_3COOH] / 1.74 \times 10^{-5} = \frac{[H^+]^2}{0.100};$ $[H^+] = 1.32 \times 10^{-3} \pmod{\text{dm}^{-3}};$ starting pH = 2.88; Accept 3sf. Award [4] for correct pH. Allow ECF. pH at equivalence point: 8 – 9; [5] (i) HIn is a weak acid; HIn $\rightleftharpoons H^+ + \ln^-$ and two colours indicated;

In acid equilibrium moves left or vice versa;

- (ii) phenolphthalein / phenol red / bromothymol blue; colour change of indicator occurs within the range of pH at equivalence point / on vertical part of graph;
 [2]
- (c) (i) specific examples of weak base and its salt / specific strong acid and weak base; [1] Name of structure acceptable.
 e.g. NH₃ and NH₄Cl.
 - (ii) pH changes very little / most acid neutralized by base; equation from (i); [2] Any other suitable example. e.g. $NH_3 + H^+ \rightarrow NH_4^+ / NH_4OH + H^+ \rightarrow NH_4^+ + H_2O$.

(b)

[4]

[3]

[1]

(d) *Brønsted-Lowry acid* a proton donor;

Lewis acid electron <u>pair</u> acceptor;

Brønsted-Lowry acid Any suitable equation;

Lewis acid – BF₃/AlCl₃/transition metal ions that form complex ion with ligands;

- 14 -

For example $BF_3 + NH_3 \rightarrow BF_3NH_3/Cu^{2+} + 4NH_3 \rightarrow [Cu(NH_3)_4]^{2+}/AlCl_3 + Cl^- \rightarrow AlCl_4^-;$ [5] Or any suitable equation.

(e) acidic;

 $[Al(H_2O)_6]^{3+} \text{ is (weak) acid due to the formation of } H^+ / [Al(H_2O)_6]^{3+} \rightleftharpoons [Al(H_2O)_5(OH)]^{2+} + H^+;$ [2]

9.	(a)	(i)	CH ₂ CH ₂ ;	[1]
		(ii)	HOOCCHNH ₂ ; CH ₃	[1]
			Allow appropriate acyl chloride.	
		(iii)	$H_2N(CH_2)_6NH_2;$ HOOC(CH_2) ₄ COOH; Allow correct alternative. Accept correct names as alternatives. If correct structure and incorrect name given, award the mark. Penalise COOH – C once only.	[2]
	(b)	(add (con	ition polymers) contain $C=C/C=C$; densation polymers) contain two reactive/functional groups;	[2]
	(c)	HCC meth <i>Acce</i>	DOCH ₃ ; nyl methanoate; <i>ppt other correct alternative</i> .	[2]
	(d)	(i)	methanol / methyl alcohol; heat and acid catalyst/H ⁺ ; $CH_3OH + CH_3COOH \rightarrow CH_3COOCH_3 + H_2O;$	[3]
		(ii)	<i>physical properties</i> ethanoic acid has a higher boiling point / ester has a lower boiling point; ethanoic acid has vinegar smell, ester has sweet/fruit smell; <i>Must specify one smell.</i> ethanoic acid is more soluble in water than methyl ethanoate / methyl ethano more soluble in non-polar solvents than ethanoic acid; ethanoic acid (in water) has a pH < 7, ester (in water) has a pH =7; <i>Award</i> [1] each for any two.	oate is [2 max]
		(iii)	ethanoic acid 3:1; methyl ethanoate 1:1; Allow 3:3.	[2]

- 15 -

- (e) (i) 2 chlorobutane is the optical isomer; has a chiral carbon/asymmetric carbon atom / 4 different groups around central atom;
 [2]
 - (ii) pass plane polarized light through (two separate) samples;
 each sample will rotate the polarized light in the <u>opposite</u> direction; [2]
 - (iii)

H Award [2] marks for 3 and [1] mark for 2 structures. Penalise missing H atoms once only.

(iv) 1-chlorobutane / 1-chloro-2-methylpropane; Accept structures. [1]

[2]

(v) mechanism

curly arrow from O of ⁻OH joined to C, and from C–Cl bond to Cl; transition state structure with partial bonds to OH and Cl and a negative charge; product: CH₃CH₂CH₂CH₂OH / CH₃CH(CH₃)CH₂OH; [3]

- 17 -

e.g.

