MARKSCHEME

May 2006

CHEMISTRY

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IBCA.

SECTION A

1. (a) $\mathrm{C}_{6} \mathrm{H}_{12}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$;
(b) (i) $\quad\left(\Delta H^{\ominus}=\sum \Delta H_{\mathrm{f}}{ }_{\text {products }}-\sum \Delta H_{\text {freactants }}^{\ominus}\right)$
$\Delta H^{\ominus}=(6 \times-394+6 \times-242)-(-43)$;
$\Delta H^{\ominus}{ }_{\mathrm{c}}=-3773 /-3.8 \times 10^{3}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$;
Accept 2, 3 or 4 sf.
Award [1] for $+3773 /+3.8 \times 10^{3}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$.
Allow ECF from (a) only if coefficients used.
(ii) $\Delta S^{\ominus}=\left(S_{\mathrm{p}}^{\ominus}-S_{\mathrm{r}}^{\ominus}\right)=(6 \times 189+6 \times 214)-(385+9 \times 205)$;
$\Delta S_{\mathrm{c}}{ }^{\ominus}=188\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) ;$
Accept only 3 sf.
Award [1] for -188.
Allow ECF from (a) only if coefficients used.
(c) $\quad\left(\Delta G^{\ominus}{ }_{\mathrm{c}}=\Delta H^{\ominus}{ }_{\mathrm{c}}-\mathrm{T} \Delta S^{\ominus}{ }_{\mathrm{c}}\right)=-3800-(298 \times 0.188)$;

$$
=-3900 \mathrm{~kJ} \mathrm{~mol}^{-1} .
$$

Accept -3800 to -3900 .
Accept 2, 3 or 4 sf.
Allow ECF from (b).
Units needed for second mark.
(d) spontaneous and ΔG^{\ominus} negative;

Allow ECF from (c).
(e) $-1 \times \Delta H_{1} / 676$;
$1 \times \Delta H_{2} /-394 ;$
$2 \times \Delta H_{3} /-484 ;$
$\Delta H_{4}=-202\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) ;$
Accept alternative methods.
Correct answers score [4].
Award [3] for (+)202 or (+)40 ($\left.\mathrm{kJ} \mathrm{/}_{\mathrm{kJ} \mathrm{mol}} \mathrm{l}^{-\mathrm{l}}\right)$.
2. (a) $A_{\mathrm{r}}(\mathrm{Tl})=203 \times 0.2952+205 \times 0.7048 / A_{\mathrm{r}}(\mathrm{Tl})=204.41$;
$A_{\mathrm{r}}(\mathrm{Br})=79 \times 0.5069+81 \times 0.4931 / A_{\mathrm{r}}(\mathrm{Br})=79.99$;
$M_{\mathrm{r}}\left(\mathrm{TlBr}_{3}\right)=204.41+3 \times 79.99=444.38 / 444.37$;
Correct answer scores [3].
Ignore units of g or $\mathrm{g} \mathrm{mol}^{-1}$.
Apply ECF to M_{r} from A_{r} values.
(b) $\quad M_{\mathrm{r}}$ is an average value (because of the isotopes);
each HBr molecule has its own value depending on which isotopes (of H or Br) it contains/OWTTE;
(c) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6}$;

Do not accept noble gas shortcut. No subscripts.
(d) Mg^{2+};
(e) $\mathrm{Al}^{3+}, \mathrm{O}^{2-}, \mathrm{Ne}, \mathrm{Na}^{+}, \mathrm{F}^{-}, \mathrm{N}^{3-}$;

Award [2] for any three, [1] for any two.
3. $\mathrm{n}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=30 \times 10^{3} \div 159.7 / \mathrm{n}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=188 \mathrm{~mol}$;
$\mathrm{n}(\mathrm{C})=5.0 \times 10^{3} \div 12.01 / \mathrm{n}(\mathrm{C})=416 \mathrm{~mol}$;
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ is the limiting reagent or implicit in calculation;
$\mathrm{n}(\mathrm{Fe})=2 \times \mathrm{n}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=2 \times 188=376 \mathrm{~mol}$;
$\mathrm{m}(\mathrm{Fe})=376 \times 55.85=21 \mathrm{~kg}$;
Accept 2 sf or 3 sf, otherwise use $-1(S F)$.
Correct final answers score [5].
Allow ECF.
4. (a) (i) (a species that) gains electrons (from another species) / causes electron loss;
(ii) changes by 3 ;
reduced because its oxidation number decreased $/+6 \rightarrow+3 / 6+\rightarrow 3+/$ it has gained electrons;
(b) (i) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}+2 \mathrm{H}^{+}+2 \mathrm{e}$;
(ii) $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}+2 \mathrm{Fe}^{3+} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}+2 \mathrm{H}^{+}+2 \mathrm{Fe}^{2+}$;
5. (a) same general formula;
successive members differ by CH_{2};
Do not allow elements or just "they".
similar chemical properties;
Allow same/constant.
gradual change in physical properties;
Do not allow change periodically.
same functional group;
Award [1] each for any two.
(b) add bromine (water);
alkanes - no change / stays or turns brown;
Allow red-brown or any combination of brown, orange or yellow.
alkenes - bromine (water) decolorizes;
Do not allow clear or discoloured.
or
add (acidified) KMnO_{4};
alkanes - no change;
alkenes - MnO_{4}^{-}decolorizes / brown / black;
Do not accept addition of H_{2} or HBr .
(c) butan-1-ol:
butanal;
butanoic acid;
butan-2-ol: butanone;
2 methylpropan-2-ol: no oxidation;
Also accept correct structures. Where both name and structure given structure must be correct and name largely correct.

SECTION B

6. (a) $K / K_{\mathrm{c}}=\left[\mathrm{SO}_{3}\right]^{2} \div\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$;

Exactly as written.
Accept correct K_{p} expression.
(b) (i) vanadium(V) oxide / (di)vanadium pentaoxide / $\mathrm{V}_{2} \mathrm{O}_{5} / \mathrm{Pt}$;

Allow just vanadium oxide but not incorrect formula.
(ii) catalyst does not affect the value of K_{c};
forward and reverse rate increase equally/by the same factor;
catalyst increases the rate of the reaction;
(by providing an alternative path for the reaction with) lower activation energy;
(c) more energetic collisions / more molecules have energy greater than activation energy; more frequent collisions;
Do not accept more collisions without reference to time.
(d) (i) shifts equilibrium position to the products/right; to the side with least gas molecules or moles / lower volume of gas;
(ii) shifts equilibrium position to the products/right;
to compensate for loss of SO_{3} / produce more SO_{3};
(e) exothermic;
$K_{\text {c }}$ decreases with increasing temperature / back reaction favoured / heat used up / OWTTE;
(f) $\mathrm{n}\left(\mathrm{SO}_{2}\right)_{\text {atequilibrium }}=1.50-0.50=1.00 \mathrm{~mol}$;
$\mathrm{n}\left(\mathrm{O}_{2}\right)_{\text {atequilibrium }}=2.00-0.250=1.75 \mathrm{~mol}$;

$$
\begin{aligned}
& {\left[\mathrm{SO}_{2}\right]=1.00 \div 1.50=0.667 \mathrm{~mol} \mathrm{dm}^{-3},\left[\mathrm{O}_{2}\right]=1.75 \div 1.50=1.17 \mathrm{~mol} \mathrm{dm}^{-3}} \\
& {\left[\mathrm{SO}_{3}\right]=0.500 \div 1.50=0.333 \mathrm{~mol} \mathrm{dm}^{-3} ;} \\
& K_{\mathrm{c}}=(0.333)^{2} \div 1.17 \times(0.667)^{2} ; \\
& \quad=0.213 \mathrm{dm}^{3} \mathrm{~mol}^{-1} / 0.214 \mathrm{dm}^{3} \mathrm{~mol}^{-1} ; \\
& \text { Allow ECF. } \\
& \text { If 0.202 dm mol } \\
& \text { Award }[5] \text { for correct answer award [4], this is obtained by premature rounding. }
\end{aligned}
$$

(g) (i) the greater the strength of the intermolecular forces the greater the enthalpy of vaporization/OWTTE;
pentane has only van der Waals' forces between molecules;
propanoic acid has H-bonding (as well as van der Waals' forces);
(ii)
vapour pressure

[^0]7. (a)

Accept any combination of dots, crosses and lines.
Penalise missing fluorine lone pairs once only.
(b) XeF_{4}

Square planar and 90°;
$P F_{5}$
trigonal bipyramid and 90° and 120°;
$B F_{4}^{-}$
Tetrahedral and $109.5^{\circ} / 109^{\circ}$;
Allow clear suitable diagrams instead of name.
No ECF from (a).
(c) hybridization: mixing / merging of atomic orbitals;
N_{2} - sp;
$\mathrm{N}_{2} \mathrm{H}_{2}-\mathrm{sp}^{2}$;
$\mathrm{N}_{2} \mathrm{H}_{4}-\mathrm{sp}^{3}$;
(d) σ bonds (result from the) overlapping of orbitals end to end / along inter-nuclear axis; π bonds (result from the) overlapping of parallel/sideways p orbitals;
(single bonds) σ bonds only;
(double bonds) have a σ bond and a π bond;
Suitable clear and labelled diagrams acceptable for all marks.
(e) (i) electron removed from higher energy level / further from nucleus / greater atomic radius; increased repulsion by extra inner shell electrons / increased shielding effect;
(ii) $\quad \mathrm{Mg}^{2+} \underline{(\mathrm{g})} \rightarrow \mathrm{Mg}^{3+} \underline{(\mathrm{g})}+\mathrm{e}$;
(even though) valence electrons in the same shell/main energy level / Mg^{2+} has noble gas configuration;
Mg has greater nuclear/core charge/more protons;
(f) (i) Mg has twice/more delocalized electrons as Na ; the ionic charge is twice as big/greater in Mg than Na ; sodium ion is larger than magnesium ion; attraction of ions and electrons is less in sodium/greater in magnesium; Correct discussion of charge density gains $2^{\text {nd }}$ and $3^{\text {rd }}$ mark. Award [1] each for any three.
(ii) SO_{2} has (weak) intermolecular/van der Waals' force/dipole - dipole; MgO has (strong) ionic bonds; Ionic bonding is stronger than intermolecular attraction (OWTTE);
8. (a) (i) $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$;
(ii) curve should include the following:
starting $\mathrm{pH}=1$;
equivalence point: $25.0 \mathrm{~cm}^{3}$ of NaOH ;
pH at equivalence point $=7$;
pH to finish $=12-13$;

Penalise [1] if profile incorrect.
(iii) $K_{\mathrm{a}}=10^{-4.76} / 1.74 \times 10^{-5}$;
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]^{2} \div\left[\mathrm{CH}_{3} \mathrm{COOH}\right] / 1.74 \times 10^{-5}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.100} ;$
$\left[\mathrm{H}^{+}\right]=1.32 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$;
starting $\mathrm{pH}=2.88$;
Accept 3sf.
Award [4] for correct pH.
Allow ECF.
pH at equivalence point: $8-9$;
(b) (i) HIn is a weak acid;
$\mathrm{HIn} \rightleftharpoons \mathrm{H}^{+}+\mathrm{In}^{-}$and two colours indicated;
In acid equilibrium moves left or vice versa;
(ii) phenolphthalein / phenol red / bromothymol blue;
colour change of indicator occurs within the range of pH at equivalence point / on vertical part of graph;
(c) (i) specific examples of weak base and its salt / specific strong acid and weak base;

Name of structure acceptable.
e.g. NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$.
(ii) pH changes very little / most acid neutralized by base;
equation from (i);
Any other suitable example.
e.g. $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+} / \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$.
(d) Brønsted-Lowry acid a proton donor;

Lewis acid
electron pair acceptor;
Brønsted-Lowry acid
Any suitable equation;
Lewis acid $-\mathrm{BF}_{3} / \mathrm{AlCl}_{3} /$ transition metal ions that form complex ion with ligands;
For example
$\mathrm{BF}_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{BF}_{3} \mathrm{NH}_{3} / \mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} / \mathrm{AlCl}_{3}+\mathrm{Cl}^{-} \rightarrow \mathrm{AlCl}_{4}^{-} ;$
Or any suitable equation.
(e) acidic;
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is (weak) acid due to the formation of $\mathrm{H}^{+} /$
$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}^{+} ;$
9. (a) (i) $\mathrm{CH}_{2} \mathrm{CH}_{2}$; [1]

Allow appropriate acyl chloride.
(iii) $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$;
$\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$;
Allow correct alternative.
Accept correct names as alternatives.
If correct structure and incorrect name given, award the mark.
Penalise COOH - C once only.
(b) (addition polymers) contain $\mathrm{C}=\mathrm{C} / \mathrm{C} \equiv \mathrm{C}$;
(condensation polymers) contain two reactive/functional groups; [2]
(c) HCOOCH_{3};
methyl methanoate;
Accept other correct alternative.
(d) (i) methanol / methyl alcohol;
heat and acid catalyst/ H^{+};
$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$;
(ii) physical properties
ethanoic acid has a higher boiling point / ester has a lower boiling point;
ethanoic acid has vinegar smell, ester has sweet/fruit smell;
Must specify one smell.
ethanoic acid is more soluble in water than methyl ethanoate / methyl ethanoate is
more soluble in non-polar solvents than ethanoic acid;
ethanoic acid (in water) has a $\mathrm{pH}<7$, ester (in water) has a $\mathrm{pH}=7$;
Award [1] each for any two.
(iii) ethanoic acid

3:1;
methyl ethanoate
1:1;
Allow 3:3.
(e) (i) 2 - chlorobutane is the optical isomer; has a chiral carbon/asymmetric carbon atom / 4 different groups around central atom;
(ii) pass plane polarized light through (two separate) samples;
each sample will rotate the polarized light in the opposite direction;
(iii)

Award [2] marks for 3 and [1] mark for 2 structures.
Penalise missing H atoms once only.
(iv) 1-chlorobutane / 1-chloro-2-methylpropane;

Accept structures.
(v) mechanism
curly arrow from O of ${ }^{-} \mathrm{OH}$ joined to C , and from $\mathrm{C}-\mathrm{Cl}$ bond to Cl ;
transition state structure with partial bonds to OH and Cl and a negative charge; product: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} / \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$;
e.g.

[^0]: $1^{\text {st }}$ mark: graph goes upwards with T ;
 $2^{\text {nd }}$ mark: curve as shown;
 as temperature increases (more) molecules have enough energy to overcome intermolecular / attractive forces;

