M06/4/CHEMI/HP3/ENG/TZ0/XX/M+

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MARKSCHEME

May 2006

CHEMISTRY

Higher Level

Paper 3

22 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

Option B – Medicines and drugs

B1.	(a)	a moderate dose may induce sedation / reduce anxiety or tension / slower mental activity / slows CNS / causes drowsiness; a high dose may induce sleep / coma / unconsciousness / death; <i>Award</i> [1] for both.	[1]
	(b)	orange to green; Cr ³⁺ / chromium(III);	[2]
B2.	(a)	amphetamines / stimulants; increased heart rate / increased blood pressure / increased breathing rate / dilation of pupils / constriction of arteries / sweating / increased alertness / decreased appetite;	[2]
	(b)	(i) nicotine; Accept nicotin.	[1]
		 (ii) increased heart rate; increased blood pressure; reduced urine output; increased concentration / stimulating effect; Award [1] each for any two. 	ıax]
		 (iii) increased risk of cancer; increased risk of stroke / (coronary) thrombosis / heart disease; ulcers; emphysema/bronchitis/shortage of breath; coughing / bad breath / yellowing of teeth or fingers; effect on pregnancy; <i>Award [1] each for any two.</i> 	ıax]
B3.	(a)	<pre>viruses are smaller; viruses do not have nuclei/cell wall / bacteria do have nuclei/cell wall; viruses do not have cytoplasm / bacteria do have cytoplasm; viruses do not feed/excrete/grow / bacteria do feed/excrete/grow; viruses use cell material of the invaded cell to reproduce themselves; [2 m Award [1] each for any two.</pre>	nax]
	(b)	stops virus replication; acyclovir becomes part of DNA of virus / mimics nucleotide or guanine / alters virus DNA / prevents other nucleotides from attaching;	[2]
	(c)	if receptor site is modified/altered, HIV virus could not bind to cells; drug prevents HIV from losing the protein coat; reverse transcriptase can be blocked (to avoid converting the virus into a structure that can enter the nucleus of the host cell); the production of new viral BNA and proteins can be blocked;	
		drug stops viruses leaving the cells; [2 m Award [1] each for any two.	ax]

B4.	(a)	nitrous oxide is not very powerful / some side effects; ethoxyethane is flammable; halothane is potentially harmful to the ozone layer/is a CFC/is toxic;		
	(b)	(i)	(0.8+0.3+0.1=)1.2 atm;	[1]

(ii) (applying $p_{0^2} = X_{0^2} P_{total} X_{0^2} = 0.25 / \frac{1}{4} / 25 \%$; [1] If necessary apply (U-1) to (b).

-7-

B5. one enantioner has beneficial/desired effect; the other enantiomer no effect/harmful effect/waste of material/more clinical trials necessary; thalidomide; one thalidomide enantiomer relieves symptoms of morning sickness while the other isomer can cause birth defects; *Accept alternatives, e.g.* ibuprofen; one enantiomer much more effective; taxol;

one enantiomer much more effective;

[4]

Option C – Human biochemistry

[2]

C2. (a)

- (b) there are no more double bonds / all single bonds (in the R group); molecules pack closer together/straighter chains / regular structure / fewer kinks / OWTTE; stronger van der Waals' forces; [3] Accept London / dispersion forces / vdW but not intermolecular.
- C3. (a) reaction slows down;

 V_{max} unchanged; K_m increased;inhibitors occupy active sites;substrate molecules prevented from binding to enzyme;Any four for [1] each.

(b) position of $K_{\rm m}$ must show derivation (using $\frac{1}{2}V_{\rm max}$). correct line must show slower rate but need not extend to $V_{\rm max}$.

- C4. (a) Ringing and labelling one of the two nucleotides;
 - (b) for the other nucleotide:
 circling and labelling base;
 circling and labelling sugar / pentose / ribose (accept deoxyribose);
 circling and labelling either phosphate;
 If the same nucleotide is used award [2] max.

– 10 –

[1]

[3]

D1.	melt ther rise Awa	melting of polar ice caps; thermal expansion of oceans/seas; rise in sea level/coastal flooding; <i>Award</i> [2] max.					
	clim chai Awa	nate ch nges ir <i>urd [1]</i>	nange; n agriculture / biodiversity; <i>I max</i> .	[3 max]			
D2.	(a)	(i)	agriculture / irrigation and industry; <i>Both uses needed</i> .	[1]			
		(ii)	oceans/seas; glaciers; Accept ice caps / polar regions / Antarctica or Arctic. If more than two answers are given wrong answers cancel out correct answers.	[2]			
	(b)	(i)	Passed through resins containing silicates / zeolites; Na ⁺ replaced by H ⁺ ; Cl ⁻ replaced by OH ⁻ ; H ⁺ + OH ⁻ \rightarrow H ₂ O;	[4]			
			If positive ions and negative ions given in place of Na^+ and Cl^- , award [1] max second and third points.	c for			
		(ii)	no heating/fuel needed; resins need to be replaced/regenerated;	[2]			
	(c)	amo in 5 lowe	ount of oxygen to decompose/oxidize the organic/biological matter; days / in a given time / at a fixed temperature; er BOD for pure water / higher BOD for water containing organic waste;	[3]			
D3.	(a)	inter <i>Do 1</i> burr	rnal combustion engines; not accept car exhaust. ning coal/oil;	[2]			
	(b)	(pho (red	otochemical smog contains) oxides of nitrogen / hydrocarbons; ucing smog contains) soot/fly ash/particulates / sulfur dioxide;	[2]			
	(c)	conv	vection currents get cut/pollutants cannot escape to higher altitudes <i>OWTTE</i> ; centration of pollutants increase/damage they can do lasts longer;	[2]			

Option D – Environmental chemistry

D4.	(a)	contains conjugated double bonds / delocalised electrons; <u>u.v</u> . light/radiation is absorbed;			
	(b)	A; D;	[2]		

Option E – Chemical industries

E1.	envin dista avail labou avail Awa	ronmental impact; unce from sources of raw materials / transport links; lability of energy/water; ur force; lability of investment / existence of markets; ard [2] for any three, [1] for any two.	[2 max]
E2.	(a)	limestone/CaCO ₃ ; coke/C/carbon; Do not accept coal. air / air enriched with hydrocarbons; Do not accept oxygen. Award [2] for all three, [1] for two.	[2]
	(b)	 (i) contains too much carbon/4%C; (and so it is) brittle / has low malleability / OWTTE; 	[2]
		(11) adding oxygen / converting impurities to their oxides; $C + O_2 \rightarrow CO_2 / 2C + O_2 \rightarrow 2CO / P_4 + 5O_2 \rightarrow P_4O_{10} / Si + O_2 \rightarrow SiO_2;$	[2]
	(c)	negative effect on the landscape; high demand for electricity / factory sited near power source; much aluminium is recycled / saving energy / reducing landfill sites; CO ₂ produced / greenhouse gas / global warming; fluoride emissions; <i>Award</i> [1] each for any four.	[4]
E3.	(a)	as a chemical feedstock / as a source of other chemicals (plastics, dyes, etc);	[1]
	(b)	(i) petroleum originated from living things / some amino acids contain sulfur;	[1]
		(ii) burning produces SO_2/SO_3 /acid rain;	
		Or	

it poisons catalysts;

[1 max]

E4.	(a)	brine/salt/sodium chloride;	[1]
	(b)	negative electrode	
		$2H_2O + 2e^- \rightarrow H_2 + 2OH^- / 2H^+ + 2e^- \rightarrow H_2;$	
		positive electrode	
		$2Cl^- \rightarrow Cl_2 + 2e^-;$	[2]
		Accept e instead of e^- .	
		Award [1] for two correct equations at the wrong electrodes.	
	(c)	NaOH / sodium hydroxide;	
		sodium ions are present in the solution, and OH ⁻ ions are also produced / OWTTE;	[2]
E5.	(a)	750 K / temperature in range 700-800 K·	
201	(u)	ΔG for the decomposition becomes negative;	[2]
	(b)	(i) 1450-1500 K;	
		$Cr_2O_3 + 3C \rightarrow 2Cr + 3CO;$	[2]
		(ii) ΔG for the reaction is positive at all temperatures / lines do not cross;	[1]

- 14 -

[2]

Option F – Fuels and energy

F1.	(a)	energy to be released at practical/reasonable rates / not too fast and not too slow / controllable; minimal pollution / no health hazards; <i>Must mention pollution do not accept clean or environmentally friendly.</i> cheap / plentiful / accessible; renewable; <i>Award</i> [1] each for any two.						
	(b)	(i)	 Nuclear fusion: technology not yet developed / OWTTE / releases too much energy in a very short period of time / hard to control; 					
		(ii)	<i>Tidal energy</i> : not every place has great tidal changes / needs energy storage facilities / <i>OWTTE</i> ;	[2]				
F2. <i>advantages</i> no pollution; no moving parts / no maintenance; no need for refueling / sunlight is free/unlimited; produce less noise; does not use non-renewable source of energy / conserves petroleum for other uses / OWT <i>Award</i> [1] each for any three.				3 max]				
	low batte high easil Awa	power ery/sto capit y dam <i>rd</i> [1]	r output / not very efficient / need a large surface area; orage facilities (needed in absence of light); al cost; haged; <i>l' each for any three.</i>	max]				
F3.	(a)	Lead	d/Pb and lead(IV) oxide/PbO ₂ /lead dioxide;	[1]				

- 15 -

(b) $PbO_2 + 4H^+ + SO_4^{2-} + 2e \rightarrow PbSO_4 + 2H_2O /$ $PbO_2 + 2H^+ + H_2SO_4 + 2e \rightarrow PbSO_4 + 2H_2O$; positive because reduction occurs / electron gained;

F4.	<i>outline</i> surplus energy used to pump water from low to high level; electricity generated when water flows from high to low level;						
	adva uses rapic prod avoie Awa	ntages cheap/off peak electricity; I response to demand; uces no pollution; ds building power plants that would be used rarely; rd [1] each for any two.					
	disad impa high few energ Awa	dvantages act on the environment; capital cost; locations suitable; gy lost in pumping water; rd [1] each for any two.	[6 max]				
F5.	(a)	high activity / gives out much radiation; stays radioactive for a long time / (contains isotopes with) long half-lives;	[2]				
	(b)	under water / in cooling ponds; vitrified / made into glass; buried underground/in granite/in deep mines; <i>Award</i> [1] each for any two.	[2 max]				
	(c)	$k = \frac{0.693}{3.8 \times 10^5} = 1.82 \times 10^{-6} \text{ (year}^{-1}\text{)};$					
		$t = \frac{\ln \frac{100}{10}}{k} = 1.3 \times 10^{6} \text{ years;}$	[2]				
		Unit needed for second mark. Accept value in range 1.25×10^6 and 1.30×10^6 .					

Analytical technique

	Iso	topic	composition of an element	Mass spectrometry; Accept Mass spectroscopy.	
	Functional groups present in an organic compound			Infrared spectroscopy;	
	Co wa	ncentr ters	ration of Fe ³⁺ ions in industrial waste	Visible spectroscopy/flame spectroscopy / colorimetry; Accept UV / visible but not UV on its own.	
				[3]	
G2.	(a)	(i)	A: beam splitter / (rotating) mirror; B: sample;	[2]	
			Accept B and C to be in inverted orde Award [2] for three correct, [1] for an	er 1y two.	
		(ii)	produces one frequency/wavelength; <i>Accept narrow range</i> .	[1]	
		(iii)	to convert radiation to an electronic si to compare (the intensities of) sample to determine the absorption (at partice	ignal; and control/reference beams; alar frequencies); [2 max]	
	(b)	vibra the b the c <i>Awa</i>	ations excited to higher energy levels; bonds bend/stretch; lipole moment/polarity of the molecule <i>rd</i> [2] <i>max</i> .	changes; [2]	
	(c)	I con II co III co III co Awa deten I=O- II=C III=C	rresponds to A; prresponds to C; orresponds to B; <i>rd</i> [1] for identifying each of two rmined). -H; C=O; C=C;	[2 max] matches (the third one is automatically [3]	
	(d)	A; high	er wavenumbers imply higher energies	; [2]	

Option G – Modern analytical chemistry

Information

G1. (a)

G3.	(a)	mass spectrometry;		[1]
	(b)	(i)	LC can handle larger amounts than GLC;	[1]
	 (ii) HPLC; Sugars would decompose at the high temperature used in GLC / sugars volatile; 		lot [2]	
(c) (i) the ratio between the distance travelled by the spot/stain and the distance travelled by the solvent front;		ed		
			Or	
			$R_{\rm f} = \frac{\text{distance travelled by the spot}}{\text{distance travelled by the solvent front}};$	[1 max]
		(ii)	Y is a pure substance, X is a mixture;	
			Sample X contains a substance different from A,B,C and D; (probably) contains alkaloid A;	
			Sample Y (probably) contains alkaloid B;	[3 max]

(probably) contains alkaloid B; *Award* [1] for any three.

[1 max]

Option H – Further organic chemistry

H1.	(a)	UV light / sunlight (present);	[1]
	(b)	Throughout accept radical with or without • <i>initiation reaction(s)</i> : $Cl_2 \rightarrow 2 \ Cl \cdot ;$	[1]
		propagation reactions:	
		$Cl \bullet + CH_{3}CH_{3} \rightarrow CH_{3}CH_{2} \bullet + HCl;$ $CH_{3}CH_{2} \bullet + Cl_{2} \rightarrow CH_{3}CH_{2}Cl + Cl \bullet;$	[2]
		termination reactions:	

– 19 –

(c) CFCs/chlorofluoroalkanes reach the upper atmosphere because they are normally unreactive;
 UV light breaks the C-Cl bond releasing Cl• radicals;

Cl• radicals react with ozone (molecules);

a (comparatively) small number of radicals can decompose a large number of ozone molecules /OWTTE; [3 max] Accept suitable equations.

Award [1] for any three.

[2]

[2]

- H2. (a) concentrated HNO₃; concentrated H₂SO₄; No penalty for omitting one "concentrated". Award [1] for both reagents correct but no "concentrated".
 - (b) $HNO_3 + H_2SO_4 \rightarrow H_2NO_3^+ + HSO_4^-$ and $H_2NO_3^+ \rightarrow H_2O + NO_2^+$;

0r

 $HNO_3 + H_2SO_4 \rightarrow H_2O + NO_2^+ + HSO_4^- / HNO_3 + 2H_2SO_4 \rightarrow H_3O^+ + NO_2^+ + 2HSO_4^-; [1 max]$

- 20 -

Award mark for curly arrow shown correctly.

Award mark for curly arrow shown correctly.

(d)

Accept correct names. Award [1] for each.

Accept 1,3-dinitrobenzene.

[3]

(e)	CH_3 – is electron-releasing / has positive inductive effect;	
	increase attraction between ring and NO_2^+ / <i>OWTTE</i> ;	[2]

(f) chloromethane / CH₃Cl;
 Accept CH₃Br or CH₃I
 aluminium chloride / AlCl₃/Fe/FeCl₃;

[2]

H3. (a) concentrated H_3PO_4/H_2SO_4 ; elimination / dehydration;

(b)

- 22 -

Award mark for structure of protonated alcohol.

Award mark for curly arrow shown correctly.

Award mark for curly arrow shown correctly **and** structure of alkene. For second and third step accept single step mechanism.

[3]