CHEMISTRY
 HIGHER LEVEL
 PAPER 1

Wednesday 17 November 2004 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

1	2					The Periodic Table						3	4	5	6	7	0
$\begin{gathered} 1 \\ \mathbf{1} \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number Element													$\begin{gathered} 2 \\ \mathrm{He} \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.01 \end{gathered}$			Atomic Mass								$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \mathbf{C l} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S c} \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \mathbf{C o} \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \text { Se } \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \mathbf{T c} \\ 98.91 \end{gathered}$	$\begin{array}{\|c} 44 \\ \text { Ru } \\ 101.07 \end{array}$	$\begin{array}{\|c\|} \hline 45 \\ \mathbf{R h} \\ 102.91 \end{array}$	$\begin{gathered} 46 \\ \mathbf{P d} \\ 106.42 \end{gathered}$	$\begin{array}{\|c} 47 \\ \mathbf{A g} \\ 107.87 \end{array}$	$\begin{gathered} 48 \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \mathbf{S n} \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \text { Te } \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.90 \end{gathered}$	$\begin{array}{\|c} 54 \\ \mathbf{X e} \\ 131.30 \end{array}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.34 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \text { La } \\ 138.91 \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \mathbf{O s} \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 196.97 \end{gathered}$	$\begin{array}{\|c\|} \hline 80 \\ \mathbf{H g} \\ 200.59 \end{array}$	$\begin{array}{\|c\|} \hline 81 \\ \text { Tl } \\ 204.37 \end{array}$	$\begin{array}{\|c\|} \hline 82 \\ \mathbf{P b} \\ 207.19 \end{array}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \mathbf{P 0} \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \text { Ra } \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$															
\dagger			$\begin{gathered} \hline 58 \\ \mathrm{Ce} \\ 140.12 \end{gathered}$	$\begin{gathered} 59 \\ \mathbf{P r} \\ 140.91 \end{gathered}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ 144.24 \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \\ 146.92 \end{gathered}$	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.35 \end{gathered}$	$\begin{gathered} 63 \\ \mathbf{E u} \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.92 \end{gathered}$	$\begin{gathered} 66 \\ \mathbf{D y} \\ 162.50 \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \mathbf{H o} \\ 164.93 \end{array}$	$\begin{array}{\|c} 68 \\ \mathbf{E r} \\ 167.26 \end{array}$	$\begin{gathered} 69 \\ \mathbf{T m} \\ 168.93 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ 174.97 \end{gathered}$	
\pm			$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a} \\ 231.04 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ (237) \end{gathered}$	$\begin{gathered} 94 \\ \text { Pu } \\ (242) \end{gathered}$	$\begin{gathered} 95 \\ \mathbf{A m} \\ (243) \end{gathered}$	$\begin{gathered} 96 \\ \mathbf{C m} \\ (247) \end{gathered}$	$\begin{gathered} 97 \\ \text { Bk } \\ (247) \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ (251) \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ (254) \end{gathered}$	$\begin{gathered} 100 \\ \mathbf{F m} \\ (257) \end{gathered}$	$\begin{gathered} 101 \\ \text { Md } \\ (258) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ (260) \end{gathered}$	

1. Consider the following equation.

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

How many moles of $\mathrm{CO}_{2}(\mathrm{~g})$ are produced by the complete combustion of 58 g of butane, $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$?
A. 4
B. 8
C. 12
D. 16
2. 6.0 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ reacts with 9.0 moles of carbon in a blast furnace according to the equation below.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g})
$$

What is the limiting reagent and hence the theoretical yield of iron?
A.

Limiting reagent	Theoretical yield of iron
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	6.0 mol
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	12.0 mol
carbon	9.0 mol
carbon	6.0 mol

3. What volume of $0.500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(\mathrm{aq})$ is required to react completely with 10.0 g of calcium carbonate according to the equation below?

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

A. $\quad 100 \mathrm{~cm}^{3}$
B. $200 \mathrm{~cm}^{3}$
C. $300 \mathrm{~cm}^{3}$
D. $400 \mathrm{~cm}^{3}$
4. A certain sample of element Z contains 60% of ${ }^{69} Z$ and 40% of ${ }^{71} Z$. What is the relative atomic mass of element Z in this sample?
A. 69.2
B. 69.8
C. 70.0
D. 70.2
5. Which ion would undergo the greatest deflection in a mass spectrometer?
A. ${ }^{16} \mathrm{O}^{+}$
B. ${ }^{16} \mathrm{O}^{2+}$
C. ${ }^{18} \mathrm{O}^{2+}$
D. $\left({ }^{16} \mathrm{O}^{18} \mathrm{O}\right)^{+}$
6. Rubidium is an element in the same group of the periodic table as lithium and sodium. It is likely to be a metal which has a
A. high melting point and reacts slowly with water.
B. high melting point and reacts vigorously with water.
C. low melting point and reacts vigorously with water.
D. low melting point and reacts slowly with water.
7. When the following species are arranged in order of increasing radius, what is the correct order?
A. $\mathrm{Cl}^{-}, \mathrm{Ar}, \mathrm{K}^{+}$
B. $\mathrm{K}^{+}, \mathrm{Ar}, \mathrm{Cl}^{-}$
C. $\mathrm{Cl}^{-}, \mathrm{K}^{+}, \mathrm{Ar}$
D. $\mathrm{Ar}, \mathrm{Cl}^{-}, \mathrm{K}^{+}$
8. The cyanide ion, CN^{-}, can form two complex ions with iron ions. The formulas of these ions are $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$. What is the oxidation state of iron in the two complex ions?
A.

$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$	$\left[\mathrm{Fe}(\mathbf{C N})_{6}\right]^{3-}$
-4	-3
+2	+3
+3	+2
-3	-4

9. Which molecule is linear?
A. $\quad \mathrm{SO}_{2}$
B. $\mathrm{H}_{2} \mathrm{~S}$
C. CO_{2}
D. $\mathrm{Cl}_{2} \mathrm{O}$
10. Why is the boiling point of PH_{3} lower than that of NH_{3} ?
A. PH_{3} is non-polar whereas NH_{3} is polar.
B. PH_{3} is not hydrogen bonded whereas NH_{3} is hydrogen bonded.
C. Van der Waals' forces are weaker in PH_{3} than in NH_{3}.
D. The molar mass of PH_{3} is greater than that of NH_{3}.
11. Which molecule is non-polar?
A. $\mathrm{H}_{2} \mathrm{CO}$
B. CHCl_{3}
C. NF_{3}
D. SO_{3}
12. NO_{3}^{-}is trigonal planar and NH_{3} is trigonal pyramidal. What is the approximate hybridization of N in each of these species?
A.

\mathbf{N} in $\mathbf{N O}_{\mathbf{3}}^{-}$	\mathbf{N} in $\mathbf{N H}_{\mathbf{3}}$
sp^{2}	sp^{3}
sp^{2}	sp^{2}
sp^{3}	sp^{2}
sp^{3}	sp^{3}

13. Consider the following statements.
I. All carbon-oxygen bond lengths are equal in CO_{3}^{2-}.
II. All carbon-oxygen bond lengths are equal in $\mathrm{CH}_{3} \mathrm{COOH}$.
III. All carbon-oxygen bond lengths are equal in $\mathrm{CH}_{3} \mathrm{COO}^{-}$.

Which statements are correct?
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
14. The temperature in Kelvin of $2.0 \mathrm{dm}^{3}$ of an ideal gas is doubled and its pressure is increased by a factor of four. What is the final volume of the gas?
A. $\quad 1.0 \mathrm{dm}^{3}$
B. $2.0 \mathrm{dm}^{3}$
C. $\quad 3.0 \mathrm{dm}^{3}$
D. $4.0 \mathrm{dm}^{3}$
15. Consider the following equations.

$$
\begin{array}{ll}
\mathrm{Mg}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgO}(\mathrm{~s}) & \Delta H^{\ominus}=-602 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta H^{\ominus}=-242 \mathrm{~kJ}
\end{array}
$$

What is the ΔH^{\ominus} value (in kJ) for the following reaction?

$$
\mathrm{MgO}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Mg}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A. -844
B. -360
C. +360
D. +844
16. For which of the following is the sign of the enthalpy change different from the other three?
A. $\quad \mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
B. $\quad \mathrm{Na}(\mathrm{g}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{-}$
C. $\mathrm{CO}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})$
17. Separate solutions of $\mathrm{HCl}(\mathrm{aq})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ of the same concentration and same volume were completely neutralized by $\mathrm{NaOH}(\mathrm{aq}) . X \mathrm{~kJ}$ and $Y \mathrm{~kJ}$ of heat were evolved respectively. Which statement is correct?
A. $X=Y$
B. $Y=2 X$
C. $X=2 Y$
D. $\quad Y=3 X$
18. The enthalpy change, ΔH^{\ominus}, for a chemical reaction is $-10 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and the entropy change, ΔS^{\ominus}, is $-10 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ at $27^{\circ} \mathrm{C}$. What is the value of ΔG^{\ominus} (in J) for this reaction?
A. -260
B. -7000
C. -9730
D. -13000
19. For a given reaction, why does the rate of reaction increase when the concentrations of the reactants are increased?
A. The frequency of the molecular collisions increases.
B. The activation energy increases.
C. The average kinetic energy of the molecules increases.
D. The rate constant increases.
20. Consider the following statements.
I. The rate constant of a reaction increases with increase in temperature.
II. Increase in temperature decreases the activation energy of the reaction.
III. The term A in the Arrhenius equation $\left(k=A e^{\frac{-E_{a}}{R T}}\right)$ relates to the energy requirements of the collisions.

Which statement(s) is/are correct?
A. I only
B. II only
C. I and III only
D. II and III only
21. For the chemical reaction

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

the following reaction mechanism has been proposed.

$$
\begin{array}{rc}
\mathrm{NO}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g}) & \text { fast } \\
\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) & \text { slow }
\end{array}
$$

What could be the rate equation for this reaction?
A. \quad rate $=\mathrm{k}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]$
B. \quad rate $=\mathrm{k}[\mathrm{NO}]^{2}$
C. rate $=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right]$
D. rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$
22. What will happen if $\mathrm{CO}_{2}(\mathrm{~g})$ is allowed to escape from the following reaction mixture at equilibrium?

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})
$$

A. The pH will decrease.
B. The pH will increase.
C. The pH will remain constant.
D. The pH will become zero.
23. The value of the equilibrium constant for the reaction

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

is 0.25 at $440^{\circ} \mathrm{C}$. What would the value of the equilibrium constant be for the following reaction at the same temperature?

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

A. 0.25
B. 0.50
C. 2.0
D. 4.0
24. Consider the following equilibria in $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ carbonic acid.

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) & \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \\
\mathrm{HCO}_{3}^{-}(\mathrm{aq}) & \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})
\end{aligned}
$$

Which species is present in the highest concentration?
A. $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
B. $\mathrm{H}^{+}(\mathrm{aq})$
C. $\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
D. $\mathrm{CO}_{3}^{2-}(\mathrm{aq})$
25. The acid dissociation constant of a weak acid HA has a value of $1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$. What is the pH of a $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of HA?
A. 2
B. 3
C. 5
D. 6
26. Which mixture would produce a buffer solution when dissolved in $1.0 \mathrm{dm}^{3}$ of water?
A. $\quad 0.50 \mathrm{~mol}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.50 mol of NaOH
B. 0.50 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.25 mol of NaOH
C. 0.50 mol of $\mathrm{CH}_{3} \mathrm{COOH}$ and 1.00 mol of NaOH
D. $\quad 0.50 \mathrm{~mol}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.25 mol of $\mathrm{Ba}(\mathrm{OH})_{2}$
27. Which compound, when dissolved in aqueous solution, has the highest pH ?
A. NaCl
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
28. In which reaction is $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$ acting as a Brønsted-Lowry base?
A. $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})$
B. $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{HPO}_{4}^{2-}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}(\mathrm{aq})$
D. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
29. Consider the following reaction.

$$
\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})+\mathrm{Sn}^{4+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})
$$

Which statement is correct?
A. $\quad \mathrm{H}_{2} \mathrm{SO}_{3}$ is the reducing agent because it undergoes reduction.
B. $\mathrm{H}_{2} \mathrm{SO}_{3}$ is the reducing agent because it undergoes oxidation.
C. Sn^{4+} is the oxidizing agent because it undergoes oxidation.
D. Sn^{4+} is the reducing agent because it undergoes oxidation.
30. What happens at the positive electrode in a voltaic cell and in an electrolytic cell?
A.

Voltaic cell	Electrolytic cell
Reduction	Oxidation
Oxidation	Reduction
Oxidation	Oxidation
Reduction	Reduction

31. Consider the following reactions.

$$
\begin{array}{ll}
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}(\mathrm{~s}) & E^{\ominus}=+0.34 \mathrm{~V} \\
\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mg}(\mathrm{~s}) & E^{\ominus}=-2.36 \mathrm{~V} \\
\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(\mathrm{~s}) & E^{\ominus}=-0.76 \mathrm{~V}
\end{array}
$$

Which statement is correct?
A. $\mathrm{Cu}^{2+}(\mathrm{aq})$ will oxidize both $\mathrm{Mg}(\mathrm{s})$ and $\mathrm{Zn}(\mathrm{s})$.
B. $\mathrm{Zn}(\mathrm{s})$ will reduce both $\mathrm{Cu}^{2+}(\mathrm{aq})$ and $\mathrm{Mg}^{2+}(\mathrm{aq})$.
C. $\mathrm{Mg}^{2+}(\mathrm{aq})$ will oxidize both $\mathrm{Cu}(\mathrm{s})$ and $\mathrm{Zn}(\mathrm{s})$.
D. $\mathrm{Cu}(\mathrm{s})$ will reduce both $\mathrm{Mg}^{2+}(\mathrm{aq})$ and $\mathrm{Zn}^{2+}(\mathrm{aq})$.
32. Consider the standard electrode potentials of the following reactions.

$$
\begin{array}{ll}
\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{~s}) & -0.75 \mathrm{~V} \\
\mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{~s}) & -0.40 \mathrm{~V}
\end{array}
$$

What is the value of the cell potential (in V) for the following reaction?

$$
2 \mathrm{Cr}(\mathrm{~s})+3 \mathrm{Cd}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{Cd}(\mathrm{~s})
$$

A. -0.35
B. -1.15
C. +0.30
D. +0.35
33. Aqueous solutions containing different concentrations of NaCl were electrolysed using platinum electrodes. What is the major product at the positive electrode in each case?

	$0.001 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}(\mathrm{aq})$	$1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaCl}(\mathrm{aq})$
A.	H_{2}	Na
B.	H_{2}	H_{2}
C.	O_{2}	Cl_{2}
D.	Cl_{2}	O_{2}

34. Which compound has the lowest boiling point?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$
B. $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{C}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$
35. Which species will show optical activity?
A. 1-chloropentane
B. 3-chloropentane
C. 1-chloro-2-methylpentane
D. 2-chloro-2-methylpentane
36. What type of reaction does the equation below represent?

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}
$$

A. substitution
B. condensation
C. reduction
D. addition
37. Consider the following compounds.
I. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
II. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$
III. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$

The compounds are treated separately with acidified potassium dichromate(VI) solution. Which will produce a colour change from orange to green?
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
38. Which compound reacts most rapidly by a $\mathrm{S}_{\mathrm{N}} 1$ mechanism?
A. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
39. Which compound shows three different environments for hydrogen atoms in the ${ }^{1} \mathrm{H}$ NMR spectrum?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
D. $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
40. Which statement is correct regarding the structure of benzene?
A. The ${ }^{1} \mathrm{H}$ NMR spectrum of benzene shows six different environments for H atoms.
B. Benzene is a symmetrical, planar molecule with three single and three double bonds.
C. The enthalpy change for the hydrogenation of benzene is less exothermic than that of cyclohexatriene.
D. Benzene undergoes addition reactions more readily than substitution reactions.

