

CHEMISTRY HIGHER LEVEL PAPER 1

Wednesday 17 November 2004 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

8804-6101 15 pages

0	2 He 4.00	8 9 10 O F Ne 116.00 19.00 20.18	5 16 17 18 S CI Ar 32.06 35.45 39.95	34 35 36 Se Br Kr 92 78.96 79.90 83.80	52 53 54 Te I Xe	127.60 126.90 1.	127.60 126.90 84 85 Po At (210) (210)	127.60 126.90 84 85 Po At (210) (210)	127.60 126.90 84 85 Po At (210) (210) 71 Yb Lu 173.04 174.97	127.60 126.90 84 85 Po At (210) (210) 70 71 Yb Lu 173.04 174.97
4		6 7 C N 12.01 14.01	14 15 Si P 28.09 30.97	32 33 Ge As 72.59 74.92		118.69 121.75	82 Pb 207.19	118.69 82 Pb 207.19	82 Pb 207.19 68 Er	82 Pb 207.19 68 Er 167.26
ဇာ		5 B 10.81	13 AI 26.98	30 31 Can Ga 65.37 69.72	48 49 Cd In In 240 114 82					<u> </u>
و				29 3 Cu Z 63.55 65	47 4 Ag C 107.87 112	_	79 8 Au H 196.97 200			
The Periodic Table				28 Ni 58.71	46 Pd 1 106.42		78 Pt 2 195.09			
Periodi				27 C C 0 5 58.93	45 Rh 77 102.91		77 Ir 11 192.22	 		
The				26 1 Fe 14 55.85	44 Ru 11 101.07		76 Os 21 190.21			
	<u>.</u>			25 Mn 54.94	43 Tc 1 98.91		75 Re 5 186.21			
	Atomic Number	Element Atomic Mass		24 Cr 52.00	42 Mo 95.94		74 W 183.85			
	Atomi	Ele Atorr		23 V 50.94	41 Nb 92.91		73 Ta 180.95			
				22 Ti 47.90	40 Zr 91.22		72 Hf 178.49	72 Hf 178.49	72 Hf 178.49 178.49 58 Ce 140.12	72 Hf 178.49 58 Ce 140.12
	,			21 Sc 44.96	39 Y 88.91		57 † La 138.91			
2		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62		56 Ba 137.34			
-	1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47		55 Cs 132.91	55 Cs 132.91 87 Fr (223)	55 Cs 132.91 87 Fr (223)	55 Cs Cs 132.91 87 Fr (223)

1. Consider the following equation.

$$2C_4H_{10}(g)+13O_2(g) \rightarrow 8CO_2(g)+10H_2O(l)$$

How many moles of $CO_2(g)$ are produced by the complete combustion of 58 g of butane, $C_4H_{10}(g)$?

- A. 4
- B. 8
- C. 12
- D. 16

2. 6.0 moles of $Fe_2O_3(s)$ reacts with 9.0 moles of carbon in a blast furnace according to the equation below.

$$Fe_2O_3(s) + 3C(s) \rightarrow 2Fe(s) + 3CO(g)$$

What is the limiting reagent and hence the theoretical yield of iron?

	Limiting reagent	Theoretical yield of iron		
A.	Fe_2O_3	6.0 mol		
B.	Fe_2O_3	12.0 mol		
C.	carbon	9.0 mol		
D.	carbon	6.0 mol		

3. What volume of 0.500 mol dm⁻³ HCl(aq) is required to react completely with 10.0 g of calcium carbonate according to the equation below?

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

- A. 100 cm³
- $B. \qquad 200 \text{ cm}^3$
- C. 300 cm³
- D. 400 cm^3

- 4. A certain sample of element Z contains 60% of ^{69}Z and 40% of ^{71}Z . What is the relative atomic mass of element Z in this sample?
 - A. 69.2
 - B. 69.8
 - C. 70.0
 - D. 70.2
- **5.** Which ion would undergo the greatest deflection in a mass spectrometer?
 - A. 16 O+
 - B. ${}^{16}O^{2+}$
 - C. ${}^{18}O^{2+}$
 - D. $(^{16}O^{18}O)^{+}$
- **6.** Rubidium is an element in the same group of the periodic table as lithium and sodium. It is likely to be a metal which has a
 - A. high melting point and reacts slowly with water.
 - B. high melting point and reacts vigorously with water.
 - C. low melting point and reacts vigorously with water.
 - D. low melting point and reacts slowly with water.
- 7. When the following species are arranged in order of **increasing** radius, what is the correct order?
 - A. Cl^- , Ar, K^+
 - B. K^+ , Ar, Cl^-
 - C. Cl^-, K^+, Ar
 - D. Ar, Cl^-, K^+

8. The cyanide ion, CN^- , can form two complex ions with iron ions. The formulas of these ions are $[Fe(CN)_6]^{4-}$ and $[Fe(CN)_6]^{3-}$. What is the oxidation state of iron in the two complex ions?

	[Fe(CN) ₆] ⁴⁻	$[Fe(CN)_6]^{3-}$		
A.	-4	-3		
B.	+2	+3		
C.	+3	+2		
D.	-3	-4		

- **9.** Which molecule is linear?
 - A. SO₂
 - B. H_2S
 - C. CO₂
 - D. Cl₂O
- 10. Why is the boiling point of PH₃ lower than that of NH₃?
 - A. PH₃ is non-polar whereas NH₃ is polar.
 - B. PH₃ is not hydrogen bonded whereas NH₃ is hydrogen bonded.
 - C. Van der Waals' forces are weaker in PH_3 than in NH_3 .
 - D. The molar mass of PH_3 is greater than that of NH_3 .

- 11. Which molecule is non-polar?
 - A. H₂CO
 - B. CHCl₃
 - C. NF₃
 - D. SO₃
- 12. NO_3^- is trigonal planar and NH_3 is trigonal pyramidal. What is the approximate hybridization of N in each of these species?

	N in NO ₃	N in NH ₃
A.	sp^2	sp^3
B.	sp ²	sp ²
C.	sp ³	sp^2
D.	sp^3	sp^3

- **13.** Consider the following statements.
 - I. All carbon-oxygen bond lengths are equal in CO_3^{2-} .
 - II. All carbon-oxygen bond lengths are equal in CH₃COOH.
 - III. All carbon-oxygen bond lengths are equal in CH₃COO⁻.

Which statements are correct?

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

- **14.** The temperature in Kelvin of 2.0 dm³ of an ideal gas is doubled and its pressure is increased by a factor of four. What is the final volume of the gas?
 - A. 1.0 dm³
 - B. 2.0 dm³
 - C. 3.0 dm³
 - D. $4.0 \, \text{dm}^3$
- **15.** Consider the following equations.

$$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$$
 $\Delta H^{\Theta} = -602 \text{ kJ}$

$$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(g)$$
 $\Delta H^{\Theta} = -242 \text{ kJ}$

What is the ΔH^{Θ} value (in kJ) for the following reaction?

$$MgO(s) + H_2(g) \rightarrow Mg(s) + H_2O(g)$$

- A. -844
- B. -360
- C. +360
- D. +844
- 16. For which of the following is the sign of the enthalpy change different from the other three?
 - A. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - B. $Na(g) \rightarrow Na^+(g) + e^-$
 - C. $CO_2(s) \rightarrow CO_2(g)$
 - D. $2Cl(g) \rightarrow Cl_2(g)$

- 17. Separate solutions of HCl(aq) and H₂SO₄(aq) of the same concentration and same volume were completely neutralized by NaOH(aq) . *X* kJ and *Y* kJ of heat were evolved respectively. Which statement is correct?
 - A. X = Y
 - B. Y = 2X
 - C. X = 2Y
 - D. Y = 3X
- **18.** The enthalpy change, ΔH^{\ominus} , for a chemical reaction is -10 kJ mol^{-1} and the entropy change, ΔS^{\ominus} , is $-10 \text{ J K}^{-1} \text{ mol}^{-1}$ at 27 °C. What is the value of ΔG^{\ominus} (in J) for this reaction?
 - A. -260
 - B. -7000
 - C. -9730
 - D. -13000
- **19.** For a given reaction, why does the rate of reaction increase when the concentrations of the reactants are increased?
 - A. The frequency of the molecular collisions increases.
 - B. The activation energy increases.
 - C. The average kinetic energy of the molecules increases.
 - D. The rate constant increases.

- **20.** Consider the following statements.
 - I. The rate constant of a reaction increases with increase in temperature.
 - II. Increase in temperature decreases the activation energy of the reaction.
 - III. The term A in the Arrhenius equation ($k = Ae^{\frac{-E_a}{RT}}$) relates to the energy requirements of the collisions.

Which statement(s) is/are correct?

- A. I only
- B. II only
- C. I and III only
- D. II and III only
- **21.** For the chemical reaction

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

the following reaction mechanism has been proposed.

$$NO(g) + NO(g) \rightleftharpoons N_2O_2(g)$$
 fast
 $N_2O_2(g) + O_2(g) \rightarrow 2NO_2(g)$ slow

What could be the rate equation for this reaction?

- A. rate = $k[NO][O_2]$
- B. rate = $k[NO]^2$
- C. rate = $k[N_2O_2][O_2]$
- D. rate = $k[NO]^2[O_2]$

22. What will happen if $CO_2(g)$ is allowed to escape from the following reaction mixture at equilibrium?

$$CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

- A. The pH will decrease.
- B. The pH will increase.
- C. The pH will remain constant.
- D. The pH will become zero.
- 23. The value of the equilibrium constant for the reaction

$$2HI(g) \rightleftharpoons H_{2}(g) + I_{3}(g)$$

is 0.25 at $440\,^{\circ}\text{C}$. What would the value of the equilibrium constant be for the following reaction at the same temperature?

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

- A. 0.25
- B. 0.50
- C. 2.0
- D. 4.0
- 24. Consider the following equilibria in 0.10 mol dm⁻³ carbonic acid.

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

$$HCO_3^-(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq)$$

Which species is present in the highest concentration?

- A. $H_2CO_3(aq)$
- B. $H^+(aq)$
- C. $HCO_3^-(aq)$
- D. CO_3^{2-} (aq)

- 25. The acid dissociation constant of a weak acid HA has a value of 1.0×10^{-5} mol dm⁻³. What is the pH of a 0.10 mol dm⁻³ aqueous solution of HA?
 - A. 2
 - B. 3
 - C. 5
 - D. 6
- **26.** Which mixture would produce a buffer solution when dissolved in 1.0 dm³ of water?
 - A. 0.50 mol of CH₃COOH and 0.50 mol of NaOH
 - B. 0.50 mol of CH₃COOH and 0.25 mol of NaOH
 - C. 0.50 mol of CH₃COOH and 1.00 mol of NaOH
 - D. 0.50 mol of CH₃COOH and 0.25 mol of Ba(OH)₂
- 27. Which compound, when dissolved in aqueous solution, has the highest pH?
 - A. NaCl
 - B. Na₂CO₃
 - C. NH₄Cl
 - D. NH₄NO₃
- **28.** In which reaction is $H_2PO_4^-$ (aq) acting as a Brønsted-Lowry base?
 - A. $H_2PO_4^-(aq) + NH_3(aq) \rightarrow HPO_4^{2-}(aq) + NH_4^+(aq)$
 - B. $H_2PO_4^-(aq) + OH^-(aq) \rightarrow HPO_4^{2-}(aq) + H_2O(1)$
 - C. $H_2PO_4^-(aq) + C_2H_5NH_2(aq) \rightarrow HPO_4^{2-}(aq) + C_2H_5NH_3^+(aq)$
 - $D_{\cdot} \qquad H_{2}PO_{4}^{-}\left(aq\right) + CH_{3}COOH\left(aq\right) \\ \rightarrow H_{3}PO_{4}\left(aq\right) + CH_{3}COO^{-}\left(aq\right)$

29. Consider the following reaction.

$$H_2SO_3(aq) + Sn^{4+}(aq) + H_2O(1) \rightarrow Sn^{2+}(aq) + HSO_4^-(aq) + 3H^+(aq)$$

Which statement is correct?

- A. H₂SO₃ is the reducing agent because it undergoes reduction.
- B. H₂SO₃ is the reducing agent because it undergoes oxidation.
- C. Sn⁴⁺ is the oxidizing agent because it undergoes oxidation.
- D. Sn⁴⁺ is the reducing agent because it undergoes oxidation.

30. What happens at the positive electrode in a voltaic cell and in an electrolytic cell?

	Voltaic cell	Electrolytic cell		
A.	Reduction	Oxidation		
B.	Oxidation	Reduction		
C.	Oxidation	Oxidation		
D.	Reduction	Reduction		

31. Consider the following reactions.

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$
 $E^{\Theta} = +0.34 \text{ V}$

$$Mg^{2+}(aq) + 2e^- \rightleftharpoons Mg(s)$$
 $E^{\Theta} = -2.36 \text{ V}$

$$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$$
 $E^{\Theta} = -0.76 \text{ V}$

Which statement is correct?

- A. Cu^{2+} (aq) will oxidize both Mg(s) and Zn(s).
- B. Zn(s) will reduce both $Cu^{2+}(aq)$ and $Mg^{2+}(aq)$.
- C. $Mg^{2+}(aq)$ will oxidize both Cu(s) and Zn(s).
- D. Cu (s) will reduce both Mg²⁺ (aq) and Zn²⁺ (aq).

32. Consider the standard electrode potentials of the following reactions.

$$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$$
 -0.75 V
 $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ -0.40 V

What is the value of the cell potential (in V) for the following reaction?

$$2Cr(s) + 3Cd^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Cd(s)$$

- A. -0.35
- B. -1.15
- C. +0.30
- D. +0.35

33. Aqueous solutions containing different concentrations of NaCl were electrolysed using platinum electrodes. What is the **major** product at the positive electrode in each case?

	0.001 mol dm ⁻³ NaCl(aq)	1.0 mol dm ⁻³ NaCl(aq)
A.	$\mathrm{H_2}$	Na
B.	$\mathrm{H_2}$	$\mathrm{H_2}$
C.	O_2	Cl ₂
D.	Cl ₂	O_2

- **34.** Which compound has the lowest boiling point?
 - A. CH₃CH₂CH(CH₃)CH₃
 - B. $(CH_3)_4C$
 - C. CH₃CH₂CH₂CH₂CH₃
 - D. CH₃CH₂OCH₂CH₃

- **35.** Which species will show optical activity?
 - A. 1-chloropentane
 - B. 3-chloropentane
 - C. 1-chloro-2-methylpentane
 - D. 2-chloro-2-methylpentane
- **36.** What type of reaction does the equation below represent?

$$CH_2=CH_2 + Br_2 \rightarrow BrCH_2CH_2Br$$

- A. substitution
- B. condensation
- C. reduction
- D. addition
- **37.** Consider the following compounds.
 - I. CH₃CH₂CH(OH)CH₃
 - II. CH₃CH(CH₃)CH₂OH
 - III. (CH₃)₃COH

The compounds are treated separately with acidified potassium dichromate(VI) solution. Which will produce a colour change from orange to green?

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

38. \(\)	Which com	pound reacts	most rapid	dly by a	$S_{\rm M}1$	mechanism?
------------------	-----------	--------------	------------	----------	--------------	------------

- A. $(CH_3)_3CC1$
- B. CH₃CH₂CH₂CH₂Br
- C. $(CH_3)_3CBr$
- D. CH₃CH₂CH₂CH₂Cl

39. Which compound shows three different environments for hydrogen atoms in the ¹H NMR spectrum?

- A. CH₃CH₂CH₃
- B. CH₂OHCH₂OH
- C. CH₃CH₂CH₂OH
- D. CH₃CH(OH)CH₃

40. Which statement is correct regarding the structure of benzene?

- A. The ¹H NMR spectrum of benzene shows six different environments for H atoms.
- B. Benzene is a symmetrical, planar molecule with three single and three double bonds.
- C. The enthalpy change for the hydrogenation of benzene is less exothermic than that of cyclohexatriene.
- D. Benzene undergoes addition reactions more readily than substitution reactions.