CHEMISTRY
 HIGHER LEVEL
 PAPER 1

Tuesday 18 May 2004 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

1. How many hydrogen atoms are contained in one mole of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$?
A. 5
B. 6
C. 1.0×10^{23}
D. 3.6×10^{24}
2. The percentage by mass of the elements in a compound is

$$
\mathrm{C}=72 \%, \quad \mathrm{H}=12 \%, \quad \mathrm{O}=16 \%
$$

What is the mole ratio of $\mathrm{C}: \mathrm{H}$ in the empirical formula of this compound?
A. $1: 1$
B. $1: 2$
C. 1:6
D. $6: 1$
3. What is the coefficient for $\mathrm{O}_{2}(\mathrm{~g})$ when the equation below is balanced?

$$
\ldots \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A. 2
B. 3
C. 5
D. 7
4. How many protons, neutrons and electrons are there in the species ${ }^{26} \mathrm{Mg}^{2+}$?
A.

Protons	Neutrons	Electrons
10	14	12
12	14	10
12	26	10
14	12	12

5. What is the total number of p orbitals containing one or more electrons in germanium (atomic number 32)?
A. 2
B. 3
C. 5
D. 8
6. Which of the physical properties below decrease with increasing atomic number for both the alkali metals and the halogens?
I. Atomic radius
II. Ionization energy
III. Melting point
A. I only
B. II only
C. III only
D. I and III only
7. Which of the following oxides is (are) gas(es) at room temperature?
I. $\quad \mathrm{SiO}_{2}$
II. $\mathrm{P}_{4} \mathrm{O}_{6}$
III. SO_{2}
A. I only
B. III only
C. I and II only
D. II and III only
8. Which of the reactions below occur as written?
I. $\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{I}_{2}$
II. $\mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{Cl}_{2}$
A. I only
B. II only
C. Both I and II
D. Neither I nor II
9. Based on electronegativity values, which bond is the most polar?
A. $B-C$
B. $\mathrm{C}-\mathrm{O}$
C. $\mathrm{N}-\mathrm{O}$
D. $\mathrm{O}-\mathrm{F}$
10. Which of the following species is (are) planar (has (have) all the atoms in one plane)?
I. $\quad \mathrm{CO}_{3}^{2-}$
II. $\quad \mathrm{NO}_{3}^{-}$
III. SO_{3}^{2-}
A. I only
B. II only
C. I and II only
D. II and III only
11. Which substance is most soluble in water (in mol dm ${ }^{-3}$) at 298 K ?
A. $\mathrm{CH}_{3} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
12. What is the molecular shape and the hybridization of the nitrogen atom in NH_{3} ?
A.

Molecular shape	Hybridization
tetrahedral	sp^{3}
trigonal planar	sp^{2}
trigonal pyramidal	sp^{2}
trigonal pyramidal	sp^{3}

13. Which statement about sigma and pi bonds is correct?
A. Sigma bonds are formed only by s orbitals and pi bonds are formed only by porbitals.
B. Sigma bonds are formed only by porbitals and pi bonds are formed only by sorbitals.
C. Sigma bonds are formed by either s or p orbitals, pi bonds are formed only by porbitals.
D. Sigma and pi bonds are formed by either s or p orbitals.
14. For which set of conditions does a fixed mass of an ideal gas have the greatest volume?
A.

Temperature	Pressure
low	low
low	high
high	high
high	low

15. When the solids $\mathrm{Ba}(\mathrm{OH})_{2}$ and $\mathrm{NH}_{4} \mathrm{SCN}$ are mixed, a solution is produced and the temperature drops.

$$
\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{SCN}(\mathrm{~s}) \rightarrow \mathrm{Ba}(\mathrm{SCN})_{2}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which statement about the energetics of this reaction is correct?
A. The reaction is endothermic and ΔH is negative.
B. The reaction is endothermic and ΔH is positive.
C. The reaction is exothermic and ΔH is negative.
D. The reaction is exothermic and ΔH is positive.
16. Using the equations below

$$
\begin{array}{ll}
\mathrm{Cu}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CuO}(\mathrm{~s}) & \Delta H^{\ominus}=-156 \mathrm{~kJ} \\
2 \mathrm{Cu}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s}) & \Delta H^{\ominus}=-170 \mathrm{~kJ}
\end{array}
$$

what is the value of ΔH^{\ominus} (in kJ) for the following reaction?

$$
2 \mathrm{CuO}(\mathrm{~s}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

A. 142
B. 15
C. -15
D. -142
17. Which reaction has the most negative ΔH^{\ominus} value?
A. $\mathrm{LiF}(\mathrm{s}) \rightarrow \mathrm{Li}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g})$
B. $\mathrm{Li}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g}) \rightarrow \operatorname{LiF}(\mathrm{s})$
C. $\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g})$
D. $\mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g}) \rightarrow \mathrm{NaCl}(\mathrm{s})$
18. Which reaction occurs with the largest increase in entropy?
A. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})+2 \mathrm{KI}(\mathrm{s}) \rightarrow \mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{~s})$
B. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
C. $\quad 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
19. Which of the quantities in the enthalpy level diagram below is (are) affected by the use of a catalyst?

A. I only
B. III only
C. I and II only
D. II and III only
20. What is the definition of half-life for a first order reaction?
A. The time required for the quantity of a reactant to decrease by half.
B. Half the time required for a reactant to be completely used up.
C. Half the time required for a reaction to reach its maximum rate.
D. The time required for a reaction to reach half of its maximum rate.
21. Values of a rate constant, k, and absolute temperature, T, can be used to determine the activation energy of a reaction by a graphical method. Which graph produces a straight line?
A. k versus T
B. k versus $\frac{1}{T}$
C. $\quad \ln k$ versus T
D. $\quad \ln k$ versus $\frac{1}{T}$
22. In the reaction below

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H=-92 \mathrm{~kJ}
$$

which of the following changes will increase the amount of ammonia at equilibrium?
I. Increasing the pressure
II. Increasing the temperature
III. Adding a catalyst
A. I only
B. II only
C. I and II only
D. II and III only
23. For the reaction below

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

at a certain temperature, the equilibrium concentrations are (in $\mathrm{mol} \mathrm{dm}^{-3}$):

$$
\left[\mathrm{H}_{2}\right]=0.30,\left[\mathrm{I}_{2}\right]=0.30,[\mathrm{HI}]=3.0
$$

What is the value of K ?
A. 5.0
B. 10
C. 15
D. 100
24. A buffer solution can be prepared by adding which of the following to $50 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$?
I. $50 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq})$
II. $25 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$
III. $50 \mathrm{~cm}^{3}$ of $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(\mathrm{aq})$
A. I only
B. I and II only
C. II and III only
D. I, II and III
25. Which equation represents an acid-base reaction according to the Lewis theory but not according to the Brønsted-Lowry theory?
A. $\mathrm{CO}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
B. $\mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(\mathrm{aq})$
C. $\mathrm{BaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
D. $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
26. What is the concentration of OH^{-}ions (in $\mathrm{mol} \mathrm{dm}^{-3}$) in an aqueous solution in which $\left[\mathrm{H}^{+}\right]=2.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} ?\left(K_{\mathrm{w}}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}\right)$
A. 2.0×10^{-3}
B. 4.0×10^{-6}
C. 5.0×10^{-12}
D. 2.0×10^{-17}
27. What is the relationship between K_{a} and $\mathrm{p} K_{\mathrm{a}}$?
A. $\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}$
B. $\mathrm{p} K_{\mathrm{a}}=\frac{1.0 \times 10^{-14}}{K_{\mathrm{a}}}$
C. $\mathrm{p} K_{\mathrm{a}}=\log K_{\mathrm{a}}$
D. $\mathrm{p} K_{\mathrm{a}}=\frac{1.0}{K_{\mathrm{a}}}$
28. Which curve is produced by the titration of a $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ weak base with $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ strong acid?
A.

B.

C.

D.

29. What happens to the $\mathrm{Cr}^{3+}(\mathrm{aq})$ ion when it is converted to $\mathrm{CrO}_{4}^{2-}(\mathrm{aq})$?
A. Its oxidation number decreases and it undergoes reduction.
B. Its oxidation number decreases and it undergoes oxidation.
C. Its oxidation number increases and it undergoes reduction.
D. Its oxidation number increases and it undergoes oxidation.
30. The following reactions are spontaneous as written.

$$
\begin{aligned}
& \mathrm{Fe}(\mathrm{~s})+\mathrm{Cd}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{~s}) \\
& \mathrm{Cd}(\mathrm{~s})+\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Cd}^{2+}(\mathrm{aq})+\mathrm{Sn}(\mathrm{~s}) \\
& \mathrm{Sn}(\mathrm{~s})+\mathrm{Pb}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})+\mathrm{Pb}(\mathrm{~s})
\end{aligned}
$$

Which of the following pairs will react spontaneously?
I. $\mathrm{Sn}(\mathrm{s})+\mathrm{Fe}^{2+}(\mathrm{aq})$
II. $\mathrm{Cd}(\mathrm{s})+\mathrm{Pb}^{2+}(\mathrm{aq})$
III. $\mathrm{Fe}(\mathrm{s})+\mathrm{Pb}^{2+}(\mathrm{aq})$
A. I only
B. II only
C. III only
D. II and III only
31. What is the coefficient for H^{+}when the equation below is balanced?

$$
\ldots \mathrm{Pb}(\mathrm{~s})+_\mathrm{NO}_{3}^{-}(\mathrm{aq})+_\mathrm{H}^{+}(\mathrm{aq}) \rightarrow _\mathrm{Pb}^{2+}(\mathrm{aq})+\ldots \mathrm{NO}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A. 2
B. 4
C. 6
D. 8
32. Which combination of signs for E^{\ominus} and ΔG^{\ominus} correspond to a spontaneous electrochemical reaction?
A.

\boldsymbol{E}^{\ominus}	$\boldsymbol{\Delta} \boldsymbol{G}^{\ominus}$
+	+
+	-
-	-
-	+

33. Which of the following factors affect the amount of product formed during electrolysis?
I. The current used
II. The duration of electrolysis
III. The charge on the ion
A. I and II only
B. I and III only
C. II and III only
D. I, II and III
34. Which statement about neighbouring members of all homologous series is correct?
A. They have the same empirical formula.
B. They differ by a CH_{2} group.
C. They possess different functional groups.
D. They differ in their degree of unsaturation.
35. Which compound can exist as optical isomers?
A. $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$
B. $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$
C. $\mathrm{CH}_{3} \mathrm{CHBrI}$
D. HCOOCH_{3}
36. Which product is formed by the reaction between $\mathrm{CH}_{2} \mathrm{CH}_{2}$ and HBr ?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$
B. $\mathrm{CH}_{2} \mathrm{CHBr}$
C. BrCHCHBr
D. $\mathrm{CH}_{3} \mathrm{CHBr}_{2}$
37. How many lines are present in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}$?
A. 1
B. 3
C. 4
D. 12
38. In which of the following ways does benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, react?
I. Combustion
II. Hydrogenation
III. Substitution
A. I only
B. I and II only
C. I and III only
D. I, II and III
39. Which reaction(s) involve(s) the formation of a positive ion?

I. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{OH}^{-}$

II. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{OH}^{-}$
A. I only
B. II only
C. Both I and II
D. Neither I nor II
40. What is the major product formed when a mixture of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ is heated strongly?
A. $\mathrm{CH}_{3} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SO}_{4}$
C. $\mathrm{CH}_{3} \mathrm{COOH}$
D. $\mathrm{CH}_{2} \mathrm{CH}_{2}$

