

CHEMISTRY HIGHER LEVEL PAPER 1

Wednesday 14 May 2003 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

223-152 15 pages

-	7						The Po	The Periodic Table	: Table	Ø)		ю	4	w	9	7	0	
1 H 1.01				Atomic Number	Number												2 He 4.00	
3 Li 6.94	4 Be 9.01			Element Atomic Mass	nent : Mass							5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18	
11 Na 22.99	12 Mg 24.31		•									13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95	
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Min 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80	
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30	
55 Cs 132.91	56 Ba 137.34	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.21	77 Ir 192.22	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn (222)	
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)																
		!	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm 146.92	62 Sm 150.35	63 Eu 151.96	64 Gd 157.25	65 Tb 158.92	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97		
		**	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)		

- 1. What amount of oxygen, O_2 , (in moles) contains 1.8×10^{22} molecules?
 - A. 0.0030
 - B. 0.030
 - C. 0.30
 - D. 3.0
- 2. 3.0 dm³ of sulfur dioxide are reacted with 2.0 dm³ of oxygen according to the equation:

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$

What volume of sulfur trioxide (in dm³) is formed? (Assume the reaction goes to completion and all gases are measured at the same temperature and pressure.)

- A. 5.0
- B. 4.0
- C. 3.0
- D. 2.0
- 3. What volume (in dm³) of 0.30 mol dm⁻³ NaCl solution can be prepared from 0.060 mol of solute?
 - A. 0.018
 - B. 0.20
 - C. 0.50
 - D. 5.0

4. Consider the composition of the species W, X, Y and Z below. Which species is an anion?

Species	Number of protons	Number of neutrons	Number of electrons
W	9	10	10
X	11	12	11
Y	12	12	12
Z	13	14	10

- A. W
- B. X
- C. Y
- D. Z
- 5. What is the electron configuration for an atom with Z = 22?
 - A. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4$
 - B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4p^2$
 - C. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4p^2$
 - D. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$
- **6.** Which is related to the number of electrons in the outer main energy level of the elements from the alkali metals to the halogens?
 - I. Group number
 - II. Period number
 - A. I only
 - B. II only
 - C. Both I and II
 - D. Neither I nor II

7.	Which of the	following s	salts form	coloured	solutions	when	dissolved	in water?

- I. ScCl₃
- II. FeCl₃
- III. NiCl₂
- IV. ZnCl₂
- A. I and II only
- B. II and III only
- C. III and IV only
- D. I, II, III and IV

8. The compounds Na₂O, Al₂O₃ and SO₂ respectively are

- A. acidic, amphoteric and basic.
- B. amphoteric, basic and acidic.
- C. basic, acidic and amphoteric.
- D. basic, amphoteric and acidic.

9. What is the formula for the compound formed by calcium and nitrogen?

- A. CaN
- B. Ca₂N
- C. Ca_2N_3
- D. Ca₃N₂

10. What is the best description of the carbon-oxygen bond lengths in CO_3^{2-} ?

- A. One short and two long bonds
- B. One long and two short bonds
- C. Three bonds of the same length
- D. Three bonds of different lengths

11. Which of the following is true for CO₂?

	C=O bond	CO ₂ molecule
A.	polar	non-polar
B.	non-polar	polar
C.	polar	polar
D.	non-polar	non-polar

- 12. The molar masses of C₂H₆, CH₃OH and CH₃F are very similar. How do their boiling points compare?
 - A. $C_2H_6 < CH_3OH < CH_3F$
 - B. $CH_3F < CH_3OH < C_2H_6$
 - C. $CH_3OH < CH_3F < C_2H_6$
 - D. $C_2H_6 < CH_3F < CH_3OH$
- 13. What is the distribution of electron pairs and the arrangement of atoms in the triiodide ion, I_3^- ?

	Electron pairs	Atom arrangement
A.	tetrahedral	bent
B.	square planar	linear
C.	trigonal bipyramid	linear
D.	trigonal bipyramid	bent

14. What is the number of sigma (σ) and pi (π) bonds and the hybridization of the carbon atom in

	Sigma	Pi	Hybridization
A.	4	1	sp^2
B.	4	1	sp ³
C.	3	2	sp ³
D.	3	1	sp^2

- 15. Solid, liquid and gaseous water are all present at very low pressure near $0 \, ^{\circ}$ C. How do the distances between the molecules in the three states compare under these conditions?
 - A. The distances are equal in all three states.
 - B. Distances are similar in the solid and liquid, which are smaller than that in the gas.
 - C. Distances are smallest in the solid, and similar in the liquid and gas.
 - D. Distances are smallest in the liquid, and similar in the solid and the gas.
- **16.** In which gas sample do molecules have the greatest average kinetic energy?
 - A. H₂ at 100 K
 - B. CH₄ at 273 K
 - C. H₂O at 373 K
 - D. CH₃OH at 353 K

-8-

- 17. What energy changes occur when chemical bonds are formed and broken?
 - A. Energy is absorbed when bonds are formed and when they are broken.
 - B. Energy is released when bonds are formed and when they are broken.
 - C. Energy is absorbed when bonds are formed and released when they are broken.
 - D. Energy is released when bonds are formed and absorbed when they are broken.
- 18. Which combination of ionic charge and ionic radius give the largest lattice enthalpy for an ionic compound?

	Ionic charge	Ionic radius
A.	high	large
B.	high	small
C.	low	small
D.	low	large

19. Under what conditions is a reaction spontaneous at all temperatures?

	ΔH^{Θ}	ΔS^{Θ}
A.	+	+
B.	+	-
C.	_	_
D.	_	+

20. What is ΔH for the reaction below in kJ?

$$CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g)$$

 $[\Delta H_{\rm f}/{\rm kJ~mol}^{-1}:{\rm CS_2(g)\,110},{\rm CO_2(g)\,-390},{\rm SO_2(g)\,-290}]$

- A. -570
- B. -790
- C. -860
- D. -1080

- 21. Which of the following is (are) important in determining whether a reaction occurs?
 - I. Energy of the molecules
 - II. Orientation of the molecules
 - A. I only
 - B. II only
 - C. Both I and II
 - D. Neither I nor II
- 22. The reaction between NO_2 and F_2 gives the following rate data at a certain temperature. What is the order of reaction with respect to NO_2 and F_2 ?

$[\mathrm{NO_2}]/\mathrm{moldm^{-3}}$	$[F_2]/mol dm^{-3}$	Rate/mol dm ⁻³ min ⁻¹
0.1	0.2	0.1
0.2	0.2	0.4
0.1	0.4	0.2

	NO ₂ order	F ₂ order
A.	first	first
B.	first	second
C.	second	first
D.	second	second

- 23. Which step in a multi-step reaction is the rate determining step?
 - A. The first step
 - B. The last step
 - C. The step with the lowest activation energy
 - D. The step with the highest activation energy

$$I_2(g) + 3Cl_2(g) \rightleftharpoons 2ICl_3(g)$$

What is the equilibrium constant expression for the reaction above?

A.
$$K_c = \frac{[ICl_3]}{[I_2][Cl_2]}$$

B.
$$K_c = \frac{2[ICl_3]}{3[I_2][Cl_2]}$$

C.
$$K_c = \frac{2[ICl_3]}{[I_2] + 3[Cl_2]}$$

D.
$$K_c = \frac{[ICl_3]^2}{[I_2][Cl_2]^3}$$

- 25. Which of the factors below affect the equilibrium vapour pressure of a liquid in a container?
 - I. Temperature
 - II. Surface of the liquid
 - III. Volume of the container
 - A. I only
 - B. I and II only
 - C. II and III only
 - D. I, II and III
- **26.** How does the $[H^+]$ in an aqueous solution with pH = 4 compare with the $[H^+]$ in a solution with pH = 2? The $[H^+]$ is
 - A. twice as great.
 - B. half as much.
 - C. $\frac{1}{10}$ of the value.
 - D. $\frac{1}{100}$ of the value.

27. Which is a buffer solution?

- I. $0.01 \text{ mol dm}^{-3} \text{ HCl}, 0.01 \text{ mol dm}^{-3} \text{ NaCl}$
- II. $0.01 \text{ mol dm}^{-3} \text{ CH}_3\text{COOH}, 0.01 \text{ mol dm}^{-3} \text{ CH}_3\text{COONa}$
- A. I only
- B. II only
- C. Both I and II
- D. Neither I nor II

28. Which **one** of the following species can act as both a Brønsted-Lowry acid and base in aqueous solution?

- A. CH₃COOH
- B. NO_3^-
- C_{\cdot} $H_{2}PO_{4}^{-}$
- D. OH

29. The K_a value for an acid is 1.0×10^{-2} . What is the K_b value for its conjugate base?

- A. 1.0×10^{-2}
- B. 1.0×10^{-6}
- C. 1.0×10^{-10}
- D. 1.0×10^{-12}

- **30.** Separate 20.0 cm³ solutions of a weak acid and a strong acid of the same concentration are titrated with NaOH solution. Which will be the same for these two titrations?
 - I. Initial pH
 - II. pH at equivalence point
 - III. Volume of NaOH required to reach the equivalence point
 - A. I only
 - B. III only
 - C. I and II only
 - D. II and III only
- **31.** Which is the strongest reducing agent according to the spontaneous reactions below?

$$2Cr(s) + 3Fe^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Fe(s)$$

Fe(s) + Pb²⁺(aq) \rightarrow Fe²⁺(aq) + Pb(s)

- A. Cr(s)
- B. $Cr^{3+}(aq)$
- C. $Pb^{2+}(aq)$
- D. Pb(s)
- **32.** What occurs during the operation of a voltaic cell based on the reaction:

$$Ni(s) + Pb^{2+}(aq) \rightarrow Ni^{2+}(aq) + Pb(s)$$

	External circuit	Ion movement in solution
A.	electrons move from Ni to Pb	Pb ²⁺ (aq) move away from Pb(s)
B.	electrons move from Ni to Pb	Pb ²⁺ (aq) move toward Pb(s)
C.	electrons move from Pb to Ni	Ni ²⁺ (aq) move away from Ni(s)
D.	electrons move from Pb to Ni	Ni ²⁺ (aq) move toward Ni(s)

33. $Ag(s) + NO_3^-(aq) + H^+(aq) \rightarrow Ag^+(aq) + NO(g) + H_2O(l)$

When the oxidation-reduction equation above is balanced, what is the coefficient for H⁺(aq)?

- A. 1
- B. 2
- C. 3
- D. 4
- **34.** Aqueous solutions of $AgNO_3$, $Cu(NO_3)_2$ and $Cr(NO_3)_3$ are electrolyzed using the same quantity of electricity. How do the number of moles of metal formed compare?
 - A. Ag = Cu = Cr
 - B. Ag > Cu > Cr
 - C. Ag < Cu < Cr
 - $D. \quad Cu > Ag > Cr$
- **35.** Which of the substances below is **least** soluble in water?
 - A. CH₂OHCHOHCH₂OH
 - O || B. CH₃CCH₃
 - C. CH_3CH_2COH
 - D. CH₃COCH₃

- **36.** What product results from the reaction of $CH_2 = CH_2$ with Br_2 ?
 - A. CHBrCHBr
 - B. CH₂CHBr
 - C. CH₃CH₂Br
 - D. CH₂BrCH₂Br
- **37.** How many different tripeptides can be prepared from three amino acids? (Each amino acid is used only once in a given tripeptide.)
 - A. 1
 - B. 3
 - C. 6
 - D. 9
- 38. The reaction of C₆H₆ with Br₂ in the presence of a halogen carrier is expected to produce
 - A. C_6H_6Br
 - $B. \quad C_6 H_6 B r_2$
 - C. $C_6H_4Br_2 + H_2$
 - D. $C_6H_5Br + HBr$
- **39.** Which compound reacts fastest with water?
 - A. $(CH_3)_3CBr$
 - B. $(CH_3)_3CCI$
 - C. CH₃CH₂CH₂CH₂Br
 - D. CH₃CH₂CH₂CH₂Cl

- **40.** Which of the following compounds exhibits three lines in the ¹H NMR spectrum?
 - I. CH₃CH₂OCH₃
 - II. $(CH_3)_3 CC1$
 - III. CH₃CH₂COOH
 - A. I only
 - B. II only
 - C. I and III only
 - D. I, II and III