

CHEMISTRY HIGHER LEVEL PAPER 1

Monday 18 November 2002 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

Periodic Table

1 H 1.01				Atomic	Number												2 He 4.00
3 Li 6.94	4 Be 9.01			Atomi	c Mass							5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30
55 Cs 132.91	56 Ba 137.34	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.21	77 Ir 192.22	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 Tl 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs	109 Mt									
		+								[1	[[1

†	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.12	140.91	144.24	146.92	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97
**	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.04	231.04	238.03	(237)	(242)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(260)

882-152

N02/420/H(1)

- 2 -

1. Consider the following reaction:

 $CaCl_2(aq) + 2AgNO_3(aq) \rightarrow 2AgCl(s) + Ca(NO_3)_2(aq)$

2.0 dm³ of 0.50 mol dm⁻³ CaCl₂(aq) is mixed with 1.0 dm³ of 2.0 mol dm⁻³ AgNO₃(aq). What are the concentrations of Ca²⁺(aq) and NO₃⁻(aq) after mixing?

	$[Ca^{2+}] / mol dm^{-3}$	$[NO_{3}^{-}] / mol dm^{-3}$
A.	0.66	0.33
B.	0.33	0.66
C.	1.0	2.0
D.	3.0	1.5

2. Formation of polyethene from calcium carbide, CaC_2 , can take place as follows:

 $CaC_{2} + 2H_{2}O \rightarrow Ca(OH)_{2} + C_{2}H_{2}$ $C_{2}H_{2} + H_{2} \rightarrow C_{2}H_{4}$ $nC_{2}H_{4} \rightarrow -(-CH_{2} - CH_{2} -)_{n} -$

What mass of polyethene is obtained from 64 kg of CaC_2 ?

- A. 7 kg
- B. 14 kg
- C. 21 kg
- D. 28 kg
- 3. Ammonia is manufactured by the synthesis of nitrogen and hydrogen as follows:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

56.0 g of N_2 produces 34.0 g of NH_3 .

What is the percentage yield of ammonia?

- A. 50
- B. 68
- C. 74
- D. 100

- 4. Isotopes are elements with
 - A. the same atomic number and the same number of neutrons.
 - B. the same mass number but a different number of neutrons.
 - C. the same atomic number but a different number of neutrons.
 - D. different atomic and mass numbers but the same number of neutrons.
- 5. A transition metal ion X^{3+} has the electronic configuration [Ar] $3d^4$. What is the atomic number of element X?
 - A. 22
 - B. 24
 - C. 25
 - D. 27
- 6. Which of the following electronic configurations gives rise to the largest increase between the second and third ionisation energies?
 - A. $1s^2 2s^2$
 - B. $1s^2 2s^2 2p^2$
 - C. $1s^2 2s^2 2p^6 3s^2$
 - D. $1s^2 2s^2 2p^6 3s^1$

- 7. Which of the following displacement reactions is possible?
 - A. $Br_2(aq) + 2Cl^-(aq) \rightarrow 2Br^-(aq) + Cl_2(aq)$
 - B. $I_2(aq) + 2Cl^-(aq) \rightarrow 2I^-(aq) + Cl_2(aq)$
 - C. $Cl_2(aq) + 2I^-(aq) \rightarrow 2Cl^-(aq) + I_2(aq)$
 - D. $I_2(aq) + 2Br^-(aq) \rightarrow 2I^-(aq) + Br_2(aq)$
- 8. An element E of mass number 40 has the electronic configuration 2. 8. 8. 2. Which statement regarding this element is **not** correct?
 - A. It belongs to group 2 of the periodic table.
 - B. It has 20 neutrons.
 - C. It belongs to period 4 of the periodic table.
 - D. The formula of its oxide is EO_2 .
- 9. Which ions are listed in order of **decreasing** ionic radius (highest first)?
 - A. $Mg^{2+}, Na^+, F^-, O^{2-}$
 - B. $O^{2-}, F^-, Na^+, Mg^{2+}$
 - C. $F^-, O^{2-}, Na^+, Mg^{2+}$
 - D. $Mg^{2+}, Na^+, O^{2-}, F^-$

- **10.** Consider the following coordination compounds
 - I. $[Pt(NH_3)_4]Cl_2$
 - II. [Pt(NH₃)₃Cl]Cl
 - III. $[Pt(NH_3)_2Cl_2]$

What are the charges on the complex ions?

	Ι	Π	III
A.	+2	+1	0
B.	-2	-1	0
C.	0	+1	+2
D.	0	-1	-2

- 11. Which intermolecular forces exist in dry ice, $CO_2(s)$?
 - A. Covalent bonds
 - B. Dipole-dipole attractions
 - C. Van der Waal's forces
 - D. Hydrogen bonds
- **12.** When the species NH₂⁻, NH₃ and NH₄⁺ are arranged in **increasing** order of H–N–H bond angle, the correct order is
 - A. NH_2^- , NH_3 , NH_4^+
 - B. NH_4^+ , NH_3 , NH_2^-
 - C. NH_3 , NH_4^+ , NH_2^-
 - D. NH_3 , NH_2^- , NH_4^+

13. The elements X and Y have the following electronic configurations:

What is the formula of the compound formed between X and Y?

- A. XY₂
- B. X_5Y_2
- C. X_2Y_5
- D. XY₅
- 14. Which statements about the following molecule are correct?

(CH₃)₂CHCH=CHC=CCH=CH₂

- I. Three carbon atoms are sp³ hybridized.
- II. Three carbon atoms are sp^2 hybridized.
- III. Two carbon atoms are sp hybridized.
- A. I and II only
- B. I, II and III
- C. II and III only
- D. I and III only

- 15. Under what conditions would a given mass of oxygen gas occupy the greatest volume?
 - A. High temperature and high pressure
 - B. High temperature and low pressure
 - C. Low temperature and low pressure
 - D. Low temperature and high pressure
- **16.** The volume of a gas measured at 27 °C and 101.3 kPa is 20.0 dm³. What final temperature would be required to increase the volume to 40.0 dm³ at 101.3 kPa?
 - A. 54 °C
 - B. 300 °C
 - C. 327 °C
 - D. 600 °C
- 17. Consider the following reaction:

 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \qquad \Delta H^{\ominus} = ?$

Bond enthalpies (in kJ mol⁻¹) involved in the reaction are

$N \equiv N$	x
H–H	У
N–H	Z

Which calculation will give the value of ΔH^{\ominus} ?

- A. x + 3y 6z
- B. 6z x + 3y
- C. x-3y+6z
- D. x + 3y 2z

- 18. If 3600 J of heat is added to 180 g of C₂H₅OH(l), its temperature increases from 18.5 °C to 28.5 °C. What is the specific heat capacity of C₂H₅OH(l)?
 - A. $0.500 \text{ J g}^{-1} \, {}^{\circ}\text{C}^{-1}$
 - B 2.00 J g^{-1} °C⁻¹
 - C. 20.0 J g^{-1} °C⁻¹
 - D. 200 J g^{-1} °C⁻¹
- 19. The following reaction takes place in an internal combustion engine:

$$2C_8H_{18}(g) + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(g)$$

What are the signs for ΔH^{\ominus} , ΔS^{\ominus} and ΔG^{\ominus} for this reaction?

	ΔH^{\ominus}	ΔS^{\ominus}	ΔG^{\ominus}
A.	-	+	+
B.	_	+	-
C.	_	_	-
D.	+	_	_

20. Consider the following equations:

$S(s) + O_2(g) \rightarrow SO_2(g)$	$\Delta H^{\ominus} = -298 \text{ kJ}$
$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$	$\Delta H^{\ominus} = -98 \text{ kJ}$
$SO_3(g) + H_2O(l) \rightarrow H_2SO_4(l)$	$\Delta H^{\ominus} = -130 \text{ kJ}$
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$	$\Delta H^{\ominus} = -286 \text{ kJ}$

What is the standard enthalpy change of formation (ΔH^{Θ}_{f}) for H₂SO₄(l)?

- A. -812 kJ
- B. +812 kJ
- C. -526 kJ
- D. +526 kJ

- 21. In general, the rate of a reaction can be increased by all of the following except
 - A. increasing the temperature.
 - B. increasing the activation energy.
 - C. increasing the concentration of reactants.
 - D. increasing the surface area of the reactants.
- 22. The following experimental data was obtained for the reaction $X + Y \rightarrow$ products.

[X] / mol dm ⁻³	[Y] / mol dm ⁻³	Initial rate / mol dm ⁻³ sec ⁻¹
0.10	0.10	4.0×10^{-4}
0.20	0.20	1.6×10^{-3}
0.50	0.10	1.0×10^{-2}
0.50	0.50	1.0×10^{-2}

What is the order of reaction with respect to X and the order of reaction with respect to Y?

- A. 2 and 0
- B. 0 and 2
- C. 2 and 1
- D. 1 and 0
- 23. The rate of a gaseous reaction is given by the expression rate = k [P][Q]. If the volume of the reaction vessel is reduced to $\frac{1}{4}$ of the initial volume, what will be the ratio of the new rate to the original rate?
 - A. 1:4
 - B. 1:16
 - C. 4:1
 - D. 16:1

24. The volume of the reaction vessel containing the following equilibrium mixture

$$SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$$

is increased. When equilibrium is re-established, which of the following will occur?

- A. The amount of $SO_2Cl_2(g)$ will increase.
- B. The amount of $SO_2Cl_2(g)$ will decrease.
- C. The amount of $Cl_2(g)$ will remain unchanged.
- D. The amount of $Cl_2(g)$ will decrease.
- **25.** A 1.0 dm³ reaction vessel contains initially 1.0 mol of NO₂(g) and 1.0 mol of N₂O₄(g). At equilibrium, 0.75 mol of N₂O₄(g) are present. What is the value of K_c ?

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

- A. 0.33
- B. 0.50
- C. 2.0
- D. 3.0
- 26. What affects the amount of $X_3Y(g)$ at equilibrium in the following exothermic reaction?

$$3X(g) + Y(g) \rightleftharpoons X_3Y(g)$$

- A. Temperature, pressure and a catalyst
- B. Temperature and pressure
- C. Temperature only
- D. Pressure only

27. When the following 0.10 mol dm⁻³ solutions are arranged in order of **increasing** pH (lowest first), what is the correct order?

NH₃(aq), NaOH(aq), HCl(aq), CH₃COOH(aq)

- A. NaOH, NH₃, CH₃COOH, HCl
- B. HCl, CH₃COOH, NH₃, NaOH
- C. HCl, CH₃COOH, NaOH, NH₃
- D. NaOH, NH₃, HCl, CH₃COOH
- 28. Consider a weak acid HA dissolved in water.

$$HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$

Which statements are correct?

- I. $A^{-}(aq)$ is a much stronger base than $H_2O(1)$.
- II. HA dissociates only to a very small extent in aqueous solution.
- III. The concentration of $H_3O^+(aq)$ is much greater than the concentration of HA(aq).
- A. I, II and III
- B. II and III only
- C. I and II only
- D. I and III only

- **29.** When the following aqueous solutions are arranged in order of **increasing** electrical conductivity (lowest first), what is the correct order?
 - I. $0.10 \text{ mol } \text{dm}^{-3} \text{ CH}_3 \text{COOH}$
 - II. $0.10 \text{ mol } \text{dm}^{-3} \text{ CH}_3 \text{CH}_2 \text{OH}$
 - III. 0.10 mol dm⁻³ CH₃COONa
 - A. I, II, III
 - B. III, II, I
 - C. I, III, II
 - D. II, I, III
- **30.** A certain buffer solution contains equal concentrations of $X^{-}(aq)$ and HX(aq). The K_b value for $X^{-}(aq)$ is 1.0×10^{-10} . What is the pH of the buffer?
 - A. 1
 - B. 4
 - C. 5
 - D. 10
- **31.** In the reaction

$$3Br_2 + 6CO_3^{2-} + 3H_2O \rightarrow 5Br^- + BrO_3^- + 6HCO_3^-$$

- A. Br_2 is only oxidised.
- B. Br_2 is only reduced.
- C. Br₂ is neither oxidised nor reduced.
- D. Br_2 is both oxidised and reduced.

- 32. Consider the following statements regarding electrolysis of molten lead(II) bromide.
 - I. Oxidation takes place at the anode where lead ions gain electrons.
 - II Reduction takes place at the cathode where lead ions gain electrons.
 - III Oxidation takes place at the anode where bromide ions lose electrons.
 - IV. Reduction takes place at the cathode where bromide ions lose electrons.

Which of the above statements are correct?

- A. I and II only
- B. I and IV only
- C. II and III only
- D. II and IV only
- **33.** The standard electrode potentials of three elements are as follows:

Which statement is correct?

- A. Z will oxidise $Y^{-}(aq)$ and $X^{-}(aq)$
- B. Y will oxidise $X^{-}(aq)$ and $Z^{-}(aq)$
- C. X will oxidise $Y^{-}(aq)$ and $Z^{-}(aq)$
- D. Z will oxidise $Y^{-}(aq)$ but not $X^{-}(aq)$
- 34. One Faraday of electricity was passed through the electrolytic cells placed in series containing solutions of $Ag^+(aq)$, $Ni^{2+}(aq)$ and $Cr^{3+}(aq)$. What mass of Ag, Ni and Cr respectively will be deposited? [A_r values: Ag = 108, Ni = 59, Cr = 52]
 - A. 36 g, 29.5 g and 52 g
 - B. 108 g, 59 g and 52 g
 - C. 108 g, 29.5 g and 17.3 g
 - D. 108 g, 118 g and 156 g

35. Consider the following reaction:

heat

$$CH_3COOH + NH_3 \rightarrow CH_3COONH_4 \rightarrow CH_3CONH_2$$

What will be the final product if aminoethane (ethylamine) is used instead of NH₃?

- A. CH₃CONHCH₂CH₃
- B. CH₃CONHCH₃
- C. CH₃CONH₂
- D. CH₃CONH₂CH₂CH₃
- **36.** Which of the following compounds is optically active?
 - А. HO—CH₂—COOH
 - В. H₃C—CH—COOH | ОН

37. How many different environments for hydrogen atoms are present in the ¹H NMR spectrum of the following compound?

```
(CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>CH<sub>3</sub>
```

- A. 3
- B. 4
- C. 5
- D. 9
- **38.** Consider the following reactions:

$$\begin{array}{c} \begin{array}{c} I \\ H \\ CH_{3}CH_{2}CH_{2}OH \leftarrow CH_{3}CH_{2}C \\ -H \\ \end{array} \xrightarrow{O} H \\ H \\ H \\ OH_{3}CH_{2}C \\ -OH \\ \end{array}$$

What are reagents I and II respectively?

A.	$H^{+}/Cr_{2}O_{7}^{2-}(aq)$	LiAlH ₄
B.	H ₂ /Ni	LiAlH ₄
C.	LiAlH ₄	${\rm H}^{+}/{\rm Cr_2O_7^{2-}}({\rm aq})$
D.	$\mathrm{H}^{+}/\mathrm{MnO}_{4}^{-}(\mathrm{aq})$	$H^{+}/Cr_{2}O_{7}^{2-}(aq)$

- **39.** An organic liquid L has a relative molecular mass of 46. On heating with concentrated H_2SO_4 at 170 °C, a colourless gas is evolved which decolourises $Br_2(aq)$. What is the organic liquid L?
 - A. CH₃CH₂OH
 - B. CH₃OCH₃
 - C. CH₃CH=CH₂
 - D. CH₃OH

- 40. The alkaline hydrolysis of primary halogenoalkanes usually follows an $S_N 2$ mechanism. For which compound would the rate of hydrolysis be fastest?
 - A. CH₃CH₂CH₂F
 - B. CH₃CH₂CH₂Cl
 - C_{\cdot} $CH_{3}CH_{2}CH_{2}Br$
 - D. CH₃CH₂CH₂I