CHEMISTRY
 HIGHER LEVEL
 PAPER 1

Monday 18 November 2002 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

Periodic Table

$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number													$\begin{gathered} 2 \\ \mathbf{H e} \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathbf{B e} \\ 9.01 \end{gathered}$			Atomic Mass								$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{O} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \mathbf{C l} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S c} \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \text { Mn } \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \mathbf{C o} \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \mathbf{M o} \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \text { Tc } \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \text { Cd } \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \text { Te } \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.34 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{T a} \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \text { Tl } \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \text { At } \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (261) \end{gathered}$	$\begin{gathered} 105 \\ \text { Db } \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ (263) \end{gathered}$	$\begin{gathered} 107 \\ \mathbf{B h} \\ (262) \end{gathered}$	$\begin{gathered} 108 \\ \mathbf{H s} \end{gathered}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$									

58	59	60	61	62	63	64	65	66	67	68	69	70
$\mathbf{C e}$	$\mathbf{P r}$	$\mathbf{N d}$	$\mathbf{P m}$	$\mathbf{S m}$	$\mathbf{E u}$	$\mathbf{G d}$	$\mathbf{T b}$	$\mathbf{D y}$	$\mathbf{H o}$	$\mathbf{E r}$		
140.12	140.91	144.24	146.92	150.35	151.96	157.25	158.92	162.50	164.93	$\mathbf{1 6 7 . 2 6}$	$\mathbf{T m}$	$\mathbf{T m}$
$\mathbf{Y b}$	$\mathbf{L u}$											
173.93	174.04	174.97										

$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} 91 \\ \mathbf{P a} \\ 231.04 \end{gathered}$	$\begin{gathered} 92 \\ \mathbf{U} \\ 238.03 \end{gathered}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ (237) \end{gathered}$	$\begin{gathered} 94 \\ \mathbf{P u} \\ (242) \end{gathered}$	$\begin{gathered} 95 \\ \text { Am } \\ (243) \end{gathered}$	$\begin{gathered} 96 \\ \text { Cm } \\ (247) \end{gathered}$	$\begin{gathered} 97 \\ \mathbf{B k} \\ (247) \end{gathered}$	$\begin{gathered} 98 \\ \mathbf{C f} \\ (251) \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ (254) \end{gathered}$	$\begin{gathered} 100 \\ \mathbf{F m} \\ (257) \end{gathered}$	$\begin{gathered} 101 \\ \text { Md } \\ (258) \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \\ (259) \end{gathered}$	$\begin{gathered} 103 \\ \mathbf{L r} \\ (260) \end{gathered}$

1. Consider the following reaction:

$$
\mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{AgCl}(\mathrm{~s})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

$2.0 \mathrm{dm}^{3}$ of $0.50 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CaCl}_{2}(\mathrm{aq})$ is mixed with $1.0 \mathrm{dm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{AgNO}_{3}(\mathrm{aq})$. What are the concentrations of $\mathrm{Ca}^{2+}(\mathrm{aq})$ and $\mathrm{NO}_{3}^{-}(\mathrm{aq})$ after mixing?
A.

$\left[\mathrm{Ca}^{2+}\right] / \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{NO}_{3}^{-}\right] / \mathrm{mol} \mathrm{dm}^{-3}$
0.66	0.33
0.33	0.66
1.0	2.0
3.0	1.5

2. Formation of polyethene from calcium carbide, CaC_{2}, can take place as follows:

$$
\begin{aligned}
& \mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \\
& \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \\
& n \mathrm{C}_{2} \mathrm{H}_{4} \rightarrow-\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)_{n}-
\end{aligned}
$$

What mass of polyethene is obtained from 64 kg of CaC_{2} ?
A. 7 kg
B. 14 kg
C. 21 kg
D. 28 kg
3. Ammonia is manufactured by the synthesis of nitrogen and hydrogen as follows:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

56.0 g of N_{2} produces 34.0 g of NH_{3}.

What is the percentage yield of ammonia?
A. 50
B. 68
C. 74
D. 100
4. Isotopes are elements with
A. the same atomic number and the same number of neutrons.
B. the same mass number but a different number of neutrons.
C. the same atomic number but a different number of neutrons.
D. different atomic and mass numbers but the same number of neutrons.
5. A transition metal ion X^{3+} has the electronic configuration [Ar] $3 \mathrm{~d}^{4}$. What is the atomic number of element X?
A. 22
B. 24
C. 25
D. 27
6. Which of the following electronic configurations gives rise to the largest increase between the second and third ionisation energies?
A. $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$
B. $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
7. Which of the following displacement reactions is possible?
A. $\quad \mathrm{Br}_{2}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq})$
B. $\quad \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{Cl}_{2}(\mathrm{aq})$
C. $\quad \mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq})$
D. $\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Br}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq})$
8. An element E of mass number 40 has the electronic configuration 2. 8. 8. 2. Which statement regarding this element is not correct?
A. It belongs to group 2 of the periodic table.
B. It has 20 neutrons.
C. It belongs to period 4 of the periodic table.
D. The formula of its oxide is EO_{2}.
9. Which ions are listed in order of decreasing ionic radius (highest first)?
A. $\mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{F}^{-}, \mathrm{O}^{2-}$
B. $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$
C. $\mathrm{F}^{-}, \mathrm{O}^{2-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$
D. $\mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{O}^{2-}, \mathrm{F}^{-}$
10. Consider the following coordination compounds
I. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$
II. $\quad\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Cl}$
III. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

What are the charges on the complex ions?
A.

\mathbf{I}	II	III
+2	+1	0
-2	-1	0
0	+1	+2
0	-1	-2

11. Which intermolecular forces exist in dry ice, $\mathrm{CO}_{2}(\mathrm{~s})$?
A. Covalent bonds
B. Dipole-dipole attractions
C. Van der Waal's forces
D. Hydrogen bonds
12. When the species $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and NH_{4}^{+}are arranged in increasing order of $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle, the correct order is
A. $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$
B. $\mathrm{NH}_{4}^{+}, \mathrm{NH}_{3}, \mathrm{NH}_{2}^{-}$
C. $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}, \mathrm{NH}_{2}^{-}$
D. $\mathrm{NH}_{3}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{4}^{+}$
13. The elements X and Y have the following electronic configurations:

$$
\begin{aligned}
& \mathrm{X} \quad 1 \mathrm{~s}^{2} 2 s^{2} 2 \mathrm{p}^{6} 3 s^{2} 3 p^{6} 4 s^{2} \\
& \mathrm{Y}
\end{aligned} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 s^{2} 3 \mathrm{p}^{5}-1 .
$$

What is the formula of the compound formed between X and Y ?
A. $X Y_{2}$
B. $X_{5} Y_{2}$
C. $\mathrm{X}_{2} \mathrm{Y}_{5}$
D. $X Y_{5}$
14. Which statements about the following molecule are correct?

$$
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}=\mathrm{CHC} \equiv \mathrm{CCH}=\mathrm{CH}_{2}
$$

I. Three carbon atoms are sp^{3} hybridized.
II. Three carbon atoms are sp^{2} hybridized.
III. Two carbon atoms are sp hybridized.
A. I and II only
B. I, II and III
C. II and III only
D. I and III only
15. Under what conditions would a given mass of oxygen gas occupy the greatest volume?
A. High temperature and high pressure
B. High temperature and low pressure
C. Low temperature and low pressure
D. Low temperature and high pressure
16. The volume of a gas measured at $27^{\circ} \mathrm{C}$ and 101.3 kPa is $20.0 \mathrm{dm}^{3}$. What final temperature would be required to increase the volume to $40.0 \mathrm{dm}^{3}$ at 101.3 kPa ?
A. $54^{\circ} \mathrm{C}$
B. $300{ }^{\circ} \mathrm{C}$
C. $\quad 327^{\circ} \mathrm{C}$
D. $600{ }^{\circ} \mathrm{C}$
17. Consider the following reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H^{\ominus}=?
$$

Bond enthalpies (in $\mathrm{kJ} \mathrm{mol}^{-1}$) involved in the reaction are

$\mathrm{N} \equiv \mathrm{N}$	x
$\mathrm{H}-\mathrm{H}$	y
$\mathrm{~N}-\mathrm{H}$	z

Which calculation will give the value of ΔH^{\ominus} ?
A. $x+3 y-6 z$
B. $6 z-x+3 y$
C. $x-3 y+6 z$
D. $x+3 y-2 z$
18. If 3600 J of heat is added to 180 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(1)$, its temperature increases from $18.5^{\circ} \mathrm{C}$ to $28.5^{\circ} \mathrm{C}$. What is the specific heat capacity of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$?
A. $\quad 0.500 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$

B $\quad 2.00 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
C. $\quad 20.0 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
D. $\quad 200 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
19. The following reaction takes place in an internal combustion engine:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What are the signs for $\Delta H^{\ominus}, \Delta S^{\ominus}$ and ΔG^{\ominus} for this reaction?
A.

$\boldsymbol{\Delta} \boldsymbol{H}^{\ominus}$	$\boldsymbol{\Delta} \boldsymbol{S}^{\ominus}$	$\boldsymbol{\Delta} \boldsymbol{G}^{\ominus}$
-	+	+
-	+	-
-	-	-
+	-	-

20. Consider the following equations:

$$
\begin{array}{ll}
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) & \Delta H^{\ominus}=-298 \mathrm{~kJ} \\
\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) & \Delta H^{\ominus}=-98 \mathrm{~kJ} \\
\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) & \Delta H^{\ominus}=-130 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H^{\ominus}=-286 \mathrm{~kJ}
\end{array}
$$

What is the standard enthalpy change of formation $\left(\Delta H_{f}^{\ominus}\right)$ for $\mathrm{H}_{2} \mathrm{SO}_{4}(1)$?
A. $\quad-812 \mathrm{~kJ}$
B. +812 kJ
C. -526 kJ
D. +526 kJ
21. In general, the rate of a reaction can be increased by all of the following except
A. increasing the temperature.
B. increasing the activation energy.
C. increasing the concentration of reactants.
D. increasing the surface area of the reactants.
22. The following experimental data was obtained for the reaction $\mathrm{X}+\mathrm{Y} \rightarrow$ products.

$[\mathbf{X}] / \mathbf{m o l ~ d m}^{-3}$	$[\mathbf{Y}] / \mathbf{m o l ~ d m}^{-3}$	Initial rate $/ \mathbf{m o l ~ d m}^{-3} \mathbf{s e c}^{-1}$
0.10	0.10	4.0×10^{-4}
0.20	0.20	1.6×10^{-3}
0.50	0.10	1.0×10^{-2}
0.50	0.50	1.0×10^{-2}

What is the order of reaction with respect to X and the order of reaction with respect to Y ?
A. 2 and 0
B. 0 and 2
C. 2 and 1
D. 1 and 0
23. The rate of a gaseous reaction is given by the expression rate $=k[\mathrm{P}][\mathrm{Q}]$. If the volume of the reaction vessel is reduced to $\frac{1}{4}$ of the initial volume, what will be the ratio of the new rate to the original rate?
A. $1: 4$
B. $1: 16$
C. $4: 1$
D. $16: 1$
24. The volume of the reaction vessel containing the following equilibrium mixture

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

is increased. When equilibrium is re-established, which of the following will occur?
A. The amount of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ will increase.
B. The amount of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ will decrease.
C. The amount of $\mathrm{Cl}_{2}(\mathrm{~g})$ will remain unchanged.
D. The amount of $\mathrm{Cl}_{2}(\mathrm{~g})$ will decrease.
25. A $1.0 \mathrm{dm}^{3}$ reaction vessel contains initially 1.0 mol of $\mathrm{NO}_{2}(\mathrm{~g})$ and 1.0 mol of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$. At equilibrium, 0.75 mol of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are present. What is the value of K_{c} ?

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A. 0.33
B. 0.50
C. 2.0
D. 3.0
26. What affects the amount of $X_{3} Y(g)$ at equilibrium in the following exothermic reaction?

$$
3 \mathrm{X}(\mathrm{~g})+\mathrm{Y}(\mathrm{~g}) \rightleftharpoons \mathrm{X}_{3} \mathrm{Y}(\mathrm{~g})
$$

A. Temperature, pressure and a catalyst
B. Temperature and pressure
C. Temperature only
D. Pressure only
27. When the following $0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions are arranged in order of increasing pH (lowest first), what is the correct order?

$$
\mathrm{NH}_{3}(\mathrm{aq}), \quad \mathrm{NaOH}(\mathrm{aq}), \quad \mathrm{HCl}(\mathrm{aq}), \quad \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})
$$

A. $\mathrm{NaOH}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HCl}$
B. $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{NH}_{3}, \mathrm{NaOH}$
C. $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{NaOH}, \mathrm{NH}_{3}$
D. $\mathrm{NaOH}, \mathrm{NH}_{3}, \mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COOH}$
28. Consider a weak acid HA dissolved in water.

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

Which statements are correct?
I. $\quad \mathrm{A}^{-}(\mathrm{aq})$ is a much stronger base than $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
II. HA dissociates only to a very small extent in aqueous solution.
III. The concentration of $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ is much greater than the concentration of $\mathrm{HA}(\mathrm{aq})$.
A. I, II and III
B. II and III only
C. I and II only
D. I and III only
29. When the following aqueous solutions are arranged in order of increasing electrical conductivity (lowest first), what is the correct order?
I. $\quad 0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}$
II. $\quad 0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
III. $0.10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COONa}$
A. I, II, III
B. III, II, I
C. I, III, II
D. II, I, III
30. A certain buffer solution contains equal concentrations of $\mathrm{X}^{-}(\mathrm{aq})$ and $\mathrm{HX}(\mathrm{aq})$. The K_{b} value for $\mathrm{X}^{-}(\mathrm{aq})$ is 1.0×10^{-10}. What is the pH of the buffer?
A. 1
B. 4
C. 5
D. 10
31. In the reaction

$$
3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{-}+\mathrm{BrO}_{3}^{-}+6 \mathrm{HCO}_{3}^{-}
$$

A. Br_{2} is only oxidised.
B. Br_{2} is only reduced.
C. $\quad \mathrm{Br}_{2}$ is neither oxidised nor reduced.
D. Br_{2} is both oxidised and reduced.
32. Consider the following statements regarding electrolysis of molten lead(II) bromide.
I. Oxidation takes place at the anode where lead ions gain electrons.

II Reduction takes place at the cathode where lead ions gain electrons.
III Oxidation takes place at the anode where bromide ions lose electrons.
IV. Reduction takes place at the cathode where bromide ions lose electrons.

Which of the above statements are correct?
A. I and II only
B. I and IV only
C. II and III only
D. II and IV only
33. The standard electrode potentials of three elements are as follows:

$$
\begin{array}{ll}
\mathrm{X} & +1.09 \mathrm{~V} \\
\mathrm{Y} & +0.54 \mathrm{~V} \\
\mathrm{Z} & +1.36 \mathrm{~V}
\end{array}
$$

Which statement is correct?
A. Z will oxidise $\mathrm{Y}^{-}(\mathrm{aq})$ and $\mathrm{X}^{-}(\mathrm{aq})$
B. $\quad \mathrm{Y}$ will oxidise $\mathrm{X}^{-}(\mathrm{aq})$ and $\mathrm{Z}^{-}(\mathrm{aq})$
C. X will oxidise $\mathrm{Y}^{-}(\mathrm{aq})$ and $\mathrm{Z}^{-}(\mathrm{aq})$
D. Z will oxidise $\mathrm{Y}^{-}(\mathrm{aq})$ but not $\mathrm{X}^{-}(\mathrm{aq})$
34. One Faraday of electricity was passed through the electrolytic cells placed in series containing solutions of $\mathrm{Ag}^{+}(\mathrm{aq}), \mathrm{Ni}^{2+}(\mathrm{aq})$ and $\mathrm{Cr}^{3+}(\mathrm{aq})$. What mass of Ag, Ni and Cr respectively will be deposited?
[A_{r} values: $\mathrm{Ag}=108, \mathrm{Ni}=59, \mathrm{Cr}=52$]
A. $\quad 36 \mathrm{~g}, 29.5 \mathrm{~g}$ and 52 g
B. $\quad 108 \mathrm{~g}, 59 \mathrm{~g}$ and 52 g
C. $\quad 108 \mathrm{~g}, 29.5 \mathrm{~g}$ and 17.3 g
D. $108 \mathrm{~g}, 118 \mathrm{~g}$ and 156 g
35. Consider the following reaction:
heat

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{COONH}_{4} \rightarrow \mathrm{CH}_{3} \mathrm{CONH}_{2}
$$

What will be the final product if aminoethane (ethylamine) is used instead of NH_{3} ?
A. $\mathrm{CH}_{3} \mathrm{CONHCH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{CONHCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
D. $\mathrm{CH}_{3} \mathrm{CONH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
36. Which of the following compounds is optically active?
A. $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{COOH}$
B.

C.

D.

37. How many different environments for hydrogen atoms are present in the ${ }^{1} \mathrm{H}$ NMR spectrum of the following compound?

$$
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}
$$

A. 3
B. 4
C. 5
D. 9
38. Consider the following reactions:

What are reagents I and II respectively?
A. $\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq}) \quad \mathrm{LiAlH}_{4}$
B. $\mathrm{H}_{2} / \mathrm{Ni} \quad \mathrm{LiAlH}_{4}$
C. LiAlH_{4}
$\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})$
D. $\mathrm{H}^{+} / \mathrm{MnO}_{4}^{-}(\mathrm{aq})$
$\mathrm{H}^{+} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})$
39. An organic liquid L has a relative molecular mass of 46 . On heating with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $170{ }^{\circ} \mathrm{C}$, a colourless gas is evolved which decolourises $\mathrm{Br}_{2}(\mathrm{aq})$. What is the organic liquid L?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
D. $\mathrm{CH}_{3} \mathrm{OH}$
40. The alkaline hydrolysis of primary halogenoalkanes usually follows an $\mathrm{S}_{\mathrm{N}} 2$ mechanism. For which compound would the rate of hydrolysis be fastest?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~F}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$

