CHEMISTRY
 HIGHER LEVEL
 PAPER 1

Monday 20 May 2002 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number Atomic Mass													$\begin{gathered} 2 \\ \text { He } \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.01 \end{gathered}$											$\begin{gathered} 5 \\ \mathbf{B} \\ 10.81 \end{gathered}$	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathbf{N a} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \text { Cl } \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S c} \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \mathbf{C o} \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \mathbf{A s} \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{array}{\|c\|} \hline 41 \\ \mathbf{N b} \\ 92.91 \end{array}$	$\begin{gathered} 42 \\ \mathbf{M o} \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \text { Tc } \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \mathbf{S n} \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \mathbf{T e} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{array}{\|c} 55 \\ \text { Cs } \\ 132.91 \end{array}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.34 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \mathbf{R e} \\ 186.21 \end{gathered}$	$\begin{array}{\|c} 76 \\ \mathbf{O s} \\ 190.21 \end{array}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \text { TI } \\ 204.37 \end{gathered}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \mathbf{P o} \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \text { Ra } \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (261) \end{gathered}$	$\begin{gathered} 105 \\ \mathbf{D b} \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ (263) \end{gathered}$	$\begin{gathered} 107 \\ \text { Bh } \\ (262) \end{gathered}$	$\begin{gathered} 108 \\ \mathbf{H s} \end{gathered}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	146.92	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97

90													
$\mathbf{T h}$													
232.04	91 $\mathbf{P a}$ 231.04	92 \mathbf{U} 238.03	93 $\mathbf{N p}$ (237)	94 $\mathbf{P u}$ (242)	95 $\mathbf{A m}$ (243)	96 $\mathbf{C m}$ (247)	97 $\mathbf{B k}$ (247)	98 $\mathbf{C f}$ (251)	99 $\mathbf{E s}$ (254)	100 $\mathbf{F m}$ (257)	101 $\mathbf{M d}$ (258)	102 $\mathbf{N o}$ (259)	103 $\mathbf{L r}$ (260)

1. A compound that contains only carbon, hydrogen and oxygen has the following percentage by mass:

$$
\text { carbon } 60 \% \text {, hydrogen } 8 \% \text {, oxygen } 32 \% \text {. }
$$

What is a possible molecular formula?
A. $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$
B. $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}$
C. $\mathrm{C}_{6} \mathrm{HO}_{3}$
D. $\mathrm{C}_{7} \mathrm{HO}_{4}$
2. Which sample contains the smallest amount of oxygen?
A. $0.3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
B. $\quad 0.6 \mathrm{~mol} \mathrm{O}_{3}$
C. 0.7 mol HCOOH
D. $0.8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
3. 6.4 g of copper wire is added to $0.10 \mathrm{dm}^{3}$ of $1.0 \mathrm{moldm}{ }^{-3}$ aqueous AgNO_{3} to form metallic silver and aqueous copper(II) nitrate. When the reaction is complete,
A. excess copper wire remains.
B. all the copper wire dissolves and some silver ions are left in solution.
C. all the copper wire dissolves and no silver ions are left in solution.
D. the mass of metallic silver formed is equal to the mass of copper wire that reacts.
4. 2.02 g of $\mathrm{KNO}_{3}\left(M_{\mathrm{r}}=101\right)$ is dissolved in sufficient water to prepare $0.500 \mathrm{dm}^{3}$ of solution. What is the concentration of this solution in moldm^{-3} ?
A. 0.02
B. 0.04
C. 0.10
D. 0.20
5. Copper consists of the isotopes ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$ and has a relative atomic mass of 63.55 . What is the most likely composition?
${ }^{63} \mathrm{Cu} \quad{ }^{65} \mathrm{Cu}$
A. $30 \% \quad 70 \%$
B. $50 \% \quad 50 \%$
C. $55 \% \quad 45 \%$
D. $70 \% \quad 30 \%$
6. Which of the following atoms has/have one or more unpaired electrons?
I. Iron
II. Copper
III. Zinc
A. I only
B. III only
C. I and II only
D. I, II and III
7. Atomic line spectra provide information about the ...I... in atoms through the ...II....
I
II
A. energy levels distance between lines
B. atomic mass pattern of the lines
C. number of electrons number of lines
D. nuclear charge intensity of the lines
8. In which pair is the first species larger than the second?
A. $\quad \mathrm{Cl}$ and Cl^{-}
B. Na^{+}and Na
C. Na and K
D. Si and Cl
9. The oxides of the elements of the third period $(\mathrm{Na} \rightarrow \mathrm{Cl})$ become more $\ldots \mathbf{I} .$. and produce more ...II... solutions when added to water.

I
 II

A. ionic acidic
B. ionic alkaline
C. covalent acidic
D. covalent alkaline
10. Which of the following reactions is/are spontaneous?
I. $\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$
II. $\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Br}^{-}$
A. I only
B. II only
C. Both I and II
D. Neither I nor II
11. When the Lewis structure for HCOOCH_{3} is drawn, how many bond pairs and how many lone pairs of electrons are present?

Bond pairs Lone pairs

A. $8 \quad 4$
B. 7

5
C. 7
D. 5
12. The carbon-carbon-carbon bond angle in $\mathrm{CH}_{3} \mathrm{CHCH}_{2}$ is closest to
A. $\quad 180^{\circ}$.
B. 120°.
C. $\quad 109^{\circ}$.
D. 90°.
13. The delocalisation of electrons is most likely to be significant in
A. CO_{2}.
B. SO_{2}.
C. HCOOH .
D. TiO_{2}.
14. The shape of the triiodide ion, I_{3}^{-}, is best described as
A. bent.
B. linear.
C. T-shaped.
D. triangular.
15. What occurs during the change from a liquid to a solid at a fixed temperature?
A. The particles become smaller and heat is released.
B. The particles get closer together and heat is absorbed.
C. The particles become more ordered and heat is released.
D. The attractive forces between the particles become stronger and heat is absorbed.
16. The molar mass of an unknown gas is to be determined by weighing a sample. As well as its mass, which of the following must be known?
I. Pressure
II. Temperature
III. Volume
A. I only
B. II only
C. I and II only
D. I, II and III
17. A mixture of $0.6 \mathrm{~mol} \mathrm{~N}_{2}, 0.4 \mathrm{~mol} \mathrm{O}_{2}$ and $0.2 \mathrm{~mol} \mathrm{H}_{2}$ has a total pressure of 2.0 atmospheres. What is the partial pressure of N_{2} in atmospheres?
A. 0.5
B. 0.6
C. 1.0
D. 1.2
18. What is the value of ΔH (in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$) for the reaction below?

Bond Energies $/ \mathbf{k J ~ m o l}^{-1}$	H-H	C-C	$\mathrm{C}=\mathrm{C}$	C-H
	436	348	612	412

A. 124
B. 101
C. -101
D. -124
19. Using the information below:

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) & \Delta H=-187.6 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H=-571.6 \mathrm{~kJ}
\end{array}
$$

what is the value of ΔH (in kJ) for the following reaction?

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

A. -196.4
B. -384.0
C. -759.2
D. -946.8
20. For which of the following is the change in entropy, ΔS, closest to zero?
A. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B. $\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})$
C. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
D. $\mathrm{Mg}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{MgO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})$
21. When ΔG^{\ominus} for a reaction is negative, the reaction is
A. fast.
B. endothermic.
C. reversible.
D. spontaneous.
22.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Which change will increase the rate of the above reaction when $50 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ is added to 1.0 g of CaCO_{3} ?
A. The volume of HCl is increased.
B. The concentration of HCl is decreased.
C. The size of the CaCO_{3} solid particles is decreased.
D. The pressure of the CO_{2} is increased.
23. Which statement(s) about the following reaction at $100^{\circ} \mathrm{C}$ is/are correct?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

I. Every collision between N_{2} and H_{2} molecules is expected to produce NH_{3}.
II. This reaction must involve a collision between one N_{2} and three H_{2} molecules.
A. I only
B. II only
C. Both I and II
D. Neither I nor II
24. The rate of a chemical reaction increases with increasing temperature. This increase in reaction rate is due to
I. an increase in the collision rate.
II. a decrease in the activation energy.
III. an increase in the number of molecules that react.
A. I only
B. II only
C. I and III only
D. I, II and III
25. For a gaseous reaction, the equilibrium constant expression is:

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{O}_{2}\right]^{5}\left[\mathrm{NH}_{3}\right]^{4}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}} .
$$

Which equation corresponds to this equilibrium expression?
A. $\quad 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightleftharpoons 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
B. $4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2}$
C. $8 \mathrm{NH}_{3}+10 \mathrm{O}_{2} \rightleftharpoons 8 \mathrm{NO}+12 \mathrm{H}_{2} \mathrm{O}$
D. $2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2}$
26. The reaction

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

is exothermic. Which of the following could be used to shift the equilibrium to the right?
I. Increasing the pressure
II. Increasing the temperature
A. I only
B. II only
C. Both I and II
D. Neither I nor II
27. Which combination is correct?

	$\Delta \boldsymbol{H}_{\text {vaporisation }}$	Boiling point	Intermolecular forces
A.	large	high	strong
B.	large	low	weak
C.	small	low	strong
D.	small	high	weak

28. Solutions $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S} have the following properties:
P: $\mathrm{pH}=8$
Q: $\left[\mathrm{H}^{+}\right]=1 \times 10^{-3} \mathrm{moldm}^{-3}$
R: $\mathrm{pH}=5$
S: $\left[\mathrm{H}^{+}\right]=2 \times 10^{-7} \mathrm{moldm}^{-3}$

When these solutions are arranged in order of increasing acidity (least acidic first), the correct order is
A. $\mathbf{P}, \mathbf{S}, \mathbf{R}, \mathbf{Q}$.
B. $\mathbf{Q}, \mathbf{R}, \mathbf{S}, \mathbf{P}$.
C. $\mathbf{S}, \mathbf{R}, \mathbf{P}, \mathbf{Q}$.
D. $\mathbf{R}, \mathbf{P}, \mathbf{Q}, \mathbf{S}$.
29. The ionisation of sulfuric acid is represented by the equations below:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \\
\mathrm{HSO}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}^{2-}(\mathrm{aq})
\end{gathered}
$$

What is the conjugate base of $\mathrm{HSO}_{4}^{-}(\mathrm{aq})$?
A. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
C. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
D. $\mathrm{SO}_{4}^{2-}(\mathrm{aq})$
30. What are the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a $0.10 \mathrm{moldm}^{-3}$ solution of a weak acid $\left(K_{\mathrm{a}}=1.0 \times 10^{-7}\right)$?
$\left[\mathrm{H}^{+}\right] \quad\left[\mathrm{OH}^{-}\right]$
A. $\quad 1.0 \times 10^{-1} \quad 1.0 \times 10^{-13}$
B. $1.0 \times 10^{-3} \quad 1.0 \times 10^{-11}$
C. $1.0 \times 10^{-4} \quad 1.0 \times 10^{-10}$
D. $1.0 \times 10^{-6} \quad 1.0 \times 10^{-8}$
31. Which of the following combinations will form a buffer solution?
I. $20 \mathrm{~cm}^{3} 0.10 \mathrm{moldm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}$ and $10 \mathrm{~cm}^{3} 0.10 \mathrm{moldm}^{-3} \mathrm{CH}_{3} \mathrm{COONa}$
II. $20 \mathrm{~cm}^{3} 0.10 \mathrm{moldm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}$ and $10 \mathrm{~cm}^{3} 0.10 \mathrm{moldm}^{-3} \mathrm{NaOH}$
A. I only
B. II only
C. Both I and II
D. Neither I nor II
32. Which of the following changes represents a reduction reaction?
A. $\mathrm{Mn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{MnO}_{4}^{-}(\mathrm{aq})$
B. $\mathrm{CrO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cr}^{3+}(\mathrm{aq})$
C. $2 \mathrm{CrO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})$
D. $\mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow \mathrm{MnO}_{4}^{2-}(\mathrm{aq})$
33. The standard electrode potentials for Al and Mn are given below:

$$
\begin{array}{ll}
\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Al}(\mathrm{~s}) & -1.66 \mathrm{~V} \\
\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}(\mathrm{~s}) & -1.18 \mathrm{~V}
\end{array}
$$

What is the potential of a cell prepared with these metals in contact with $1.0 \mathrm{moldm}^{-3}$ solutions of their ions?
A. $\quad 0.22 \mathrm{~V}$
B. 0.48 V
C. 2.84 V
D. 3.43 V
34. When an aqueous solution of copper(II) chloride is electrolysed using carbon electrodes, the products are
negative electrode positive electrode
A. hydrogen gas chlorine gas
B. hydrogen gas
oxygen gas
C. copper metal
oxygen gas
D. copper metal
chlorine gas
35. The following compounds have similar molar masses. Which compound has the highest boiling point?
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
36. Which molecule possesses a chiral centre?
A. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
B. $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$
C. $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{COOH}$
D. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$
37. Which reaction occurs at room temperature?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{NH}_{2}^{-}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3}+\mathrm{CN}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCN}+\mathrm{CH}_{3}^{-}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{Br}^{-}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Cl}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}+\mathrm{OH}^{-}$
38. Which compound will undergo oxidation when treated with acidified potassium dichromate(VI)?
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
B. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{COOH}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
39. Which compound reacts by electrophilic substitution?
A. 1-Bromobutane
B. Cyclohexane
C. Methylbenzene
D. Propanone
40. The mass spectrum of $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ is not expected to show a major ion peak at which m / e ratio?
A. 88
B. 32
C. 29
D. 15

