

MARKSCHEME

November 2001

CHEMISTRY

Higher Level

Paper 3

17 pages

OPTION C – HUMAN BIOCHEMISTRY

C1. (a) CH_2OH -CHOH-CH_2OH

(b) -COOH

(Accept $CH_3(CH_2)_6COOH$ or any correct alternative, including branched structures or alkenoic acids.) [1]

(c) Molecules of saturated fats contain only single C—C bonds in the carbon chains / contain no double bonds. [1]
Molecules of unsaturated fats contain at least one C = C double bond. [1]
The degree of unsaturation can be found by determining the number of moles of iodine that react with one mole (or a stated mass) of fat. [1]
Iodine adds across the C = C double bond in a 1:1 stoichiometric ratio. [1]

Total [7 marks]

[1]

C2. (a) $-NH_2$ / amino group / amine. [1]

(b) Peptide bond (*accept amide bond*)

$$\begin{array}{c} O & H \\ \parallel & \parallel \\ \hline C & - N \end{array} (must show C = O bond for mark.)$$
[1]

- (c) First hydrolyse the peptide bonds to release individual amino acids [1] then use chromatography (comparison of R_f values) (accept electrophoresis / mass spectrometry). [1] (Award both marks if X-ray crystallography is given.)
- (d) The secondary structure describes the type of coil or sheet / folding of polypeptide / α-helix and β-pleated sheet. [1] Tertiary structure describes the interactions between the R groups of the amino acid residues. [1]
- (e) Hydrogen bond. [1]

Total [8 marks]

[1] [1]

C3.	(a)	Enzymes provide an alternative pathway with a lower activation energy.	[1]
		Enzymes posses an active site where the substrate binds to the enzyme.	[1]
		Mention of 'lock and key' and/or induced fit hypothesis.	[1]
		Competitive inhibitors (resemble the substrate in shape) compete with the substrate for the active site (and therefore slow the rate of reaction).	[1]
		Non-competitive inhibitors bind to the enzyme away from the active site.	[1]

(b)
$$K_{\rm m}$$
 for uninhibited enzyme $\left(=\frac{1}{2}V_{\rm max}\right) = 7 \pm 1 \,\mu \,{\rm mol}\,{\rm dm}^{-3}$ [1]

With a competitive inhibitor $K_{\rm m}$ is higher, $V_{\rm max}$ is the same.[1]At high [S] effect of inhibitor is negligible so no change to $V_{\rm max}$ but more substrate[1]needed to reach $\frac{1}{2}V_{\rm max}$ so $K_{\rm m}$ is higher.[1]

With a non-competitive inhibitor $K_{\rm m}$ is the same but $V_{\rm max}$ is lower.[1]Adding a non-competitive inhibitor has the same effect as lowering [enzyme](hence $V_{\rm max}$ is lower), but does not affect the way the substrate interacts with thoseenzyme molecules that are uninhibited (hence $K_{\rm m}$ is unchanged).[1]

Total [10 marks]

OPTION D – ENVIRONMENTAL CHEMISTRY

D1. (a) (i)
$$2CO + 2NO \rightarrow 2CO_2 + N_2$$

(ii)
$$CaO + SO_2 \rightarrow CaSO_3$$
 (or $2CaO + 2SO_2 + O_2 \rightarrow 2CaSO_4$)

(b)
$$2NO + O_2 \rightarrow 2NO_2$$
 [1]
 $4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$ [1]
OR
 $2SO_2 + O_2 \rightleftharpoons 2SO_3$ [1]
[2]

$$SO_3 + H_2O \rightarrow H_2SO_4 (accept SO_2 + H_2O \rightarrow H_2SO_3) [1]$$
[2]

(c) Irritation of the mucous membranes / fatigue / weakness / confusion (*e.g.* from exposure to C₆H₅CH₃) / cancer forming / respiratory problems. [1]

Total [7 marks]

D2. (a) Polychlorinated biphenyls [1] (b) LD_{50} – lethal dose in 50 % of the population (the amount of poison that kills (i) half the organisms in a randomly chosen batch of a named species). [1] Maximum daily tolerance - the highest amount or concentration that has 'no effect' on any of the organisms in a specified batch. [1] (ii) LD_{50} : Advantage: clearly measurable value. [1] Disadvantage: not done on human population so effect on humans 'unknown'. [1] OR Maximum daily tolerance value: Advantage: gives idea of 'safe amount'. [1] Disadvantage: same as for LD_{50} so has to be divided by 'safety factor'. [1] (c) Batteries / seed dressings to prevent mould / chlor-alkali process (i) (do not accept "mercury fillings in teeth"). [1] (Award [1] for any of the following:) (ii) inflammation of the mouth / muscle spasms / nausea / diarrhoea / kidney damage / blindness / deafness / damage to CNS / personality change. [1] (iii) The Hg^+ ions interfere with the normal functioning of enzymes (e.g. by replacing the Ca^{2+} or Mg^{2+} ions). [1]

Total [10 marks]

D3.	Water is a highly polar substance (due to shape and high electronegativity of oxygen). Capable of hydrogen bonding (that allows it to dissolve many chemicals).	[1] [1]		
	Fresh water not available uniformly around the world / 'locked up' in glaciers and icebergs. Where the consumption is necessarily high it is easily contaminated with water borne diseases / by micro-organisms from human waste / from flooding / due to inadequate chemical treatment of water supplies.			
	Reverse osmosis: Uses high pressure to force water from salt-water through partially- (semi)-permeable membrane; the partially-permeable membrane does not allow the passage of dissolved ions.	[1] [1] [1]		
	 OR Osmosis is the net movement of water molecules from a region of high concentration, <i>i.e.</i> pure water to one of lower concentration, <i>i.e.</i> less pure water through a partially-permeable membrane / osmosis is the tendency to equalise concentrations. Due to osmosis, pure water will move through a partially-permeable membrane into salt water, thus diluting it. If pressure greater than osmotic pressure is applied, the flow of solvent takes place in the opposite direction, called reverse osmosis. 	[1] [1] [1]		
	Ion exchange: Requires the use of both a positive ion exchange (which can replace metal ions in sea water with H ⁺ ions) and a negative ion exchange (which can replace anions with OH ⁻ ions). The H ⁺ and OH ⁻ ions combine to form fresh/pure water.	[1] [1] [1]		
	Total [10 ma	urks]		

OPTION E – CHEMICAL INDUSTRIES

E1.	(a)	(1) N_2 obtained from the fractional distillation of liquid air. (Not enough to just state 'from air'.)	[1]
		(ii) H_2 obtained from cracking of petroleum products / from water using reduction with methane / from water using reduction with naptha / catalytic reforming / electrolysis of sodium chloride solution.	[1]
	(b)	There are four volumes (moles) of gas on LHS and only two on RHS	[1]
		so increasing the pressure will move the position of equilibrium to the right	[1]
		Increasing the pressure increases the concentration of the gases	[1]
		so reaction rate increases.	[1]
	(c)	The yield of ammonia is low	[1]
		so most of the N_2 and H_2 needs to go round again (to save waste/cost).	[1]
		Total [8 ma	ırks]
E2.	(a)	The free radical electron (HO-CH ₂ -CH ₂) attacks one of the C atoms in $H_2C = CH_2$.	[1]
		An electron from one of the bonds in the double bond joins this electron to form a	
		single C–C bond.	[1]
		The double bond is now a single bond with the electron on the end carbon.	[1]
	(b)		[1]
		$\operatorname{Ho-cH}_2-\operatorname{cH}_2-\operatorname{cH}_2-\operatorname{cH}_2+\operatorname{H}_2C=\operatorname{cH}_2-\operatorname$	[1]
	(c)	High density is ionic.	[1] [1]
	(c) (d)	 Ho-CH₂-CH₂-CH₂-CH₂+H₂C = CH₂ - Ho-CH₂	[1] [1] [2]

Total [9 marks]

E3. Tabulated form of answer.

(For each, give [1] for the process, [1] for the reactants, [1] for the products, and [1] for explaining the conditions.)

Choose from the following:

Temperature	
Thermal cracking / coking	Thermal decomposition of very heavy fractions to give mainly lower alkanes and alkenes and a high coke yield .
Steam cracking	Thermal cracking of C_2 + hydrocarbons (C_4 - C_{12}) to alkenes (ethene, 1,3-butadiene, <i>etc.</i>) in the presence of steam. Temperature around 800 °C.
Catalyst	
Catalytic cracking	Accelerated decomposition, with some aromatisation, of middle/higher fractions over solid acidic catalysts/zeolites . Gives lower alkanes, alkenes, aromatics .
Hydrocracking	Accelerated hydrogenolysis / decomposition of heavy fractions to naptha over metal/acid catalysts <i>e.g.</i> palladium on zeolite.
Catalytic reforming (platforming <i>etc.</i>)	Metal/acid-catalysed <i>e.g.</i> platinum on acidic alumina rearrangement / cyclisation and dehydrogenisation of alkanes and aromatisation of napthas.
Thermal / autothermal	More general term, including methane to ethene – cracking autothermal, with partial combustion.

[8]

By choosing a suitable catalyst, the temperature required is lower which makes it more efficient (and less costly) / helps to give the desired products by dictating the mechanism.

Total [8 marks]

OPTION F – FUELS AND ENERGY

F1.	(a)	Anode:	zinc	[1]
		Cathode:	graphite (carbon)	[1]
		Electrolyte:	ammonium chloride OR zinc chloride and ammonium chloride and	
			water.	[1]

(b) Anode: $Zn \rightarrow Zn^{2+} + 2e^{-}$ [1] Cathode: $2NH_{4}^{+} + 2e^{-} \rightarrow 2NH_{3} + H_{2}$ [1] OR $2MnO_{2} + 2NH_{4}^{+} + 2e^{-} \rightarrow Mn_{2}O_{3} + 2NH_{3} + H_{2}O$ (State symbols are not required.)

(c) (Award [1] each for any two from the following:) No decline in performance under high loads / no gases formed at cathode / longer shelf life / able to produce more current for a longer time / good for emergency lighting.

(d) Voltage does not change[1]voltage depends primarily on materials used.[1]

Total [9 marks]

F2. (a) (i) ${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{37}^{90}Rb + {}_{55}^{144}Cs + 2{}_{0}^{1}n$ [2] (Give [1] for correct isotopes and [1] for two neutrons.)

- (ii) $E = mc^2 = 1 \times 0.001 \times (3.0 \times 10^8)^2$ [1] = 9.0×10¹³ J (9.0×10¹⁰ kJ) [1]
- (b) Four half-lives [1]

so
$$t_{\frac{1}{2}} = \frac{57.2}{4} = 14.3$$
 days [1]

Total [6 marks]

F3.

(a)	The crude oil is heated;	[1]
	Fed into the base of a fractionating column;	[1]
	Temperature gradient across column / lower boiling fractions distil first;	[1]
	Fractions emerging in boiling range not pure compounds.	[1]

(Award [1] each for any three correct fractions from: (any two from number of C atoms, boiling range, and uses must be correct for each mark).)

Fraction	Number of C atoms	Boiling range / °C	Uses
Gases	1-4	0–200	cooking, heating
Naptha	5–7	20–100	solvents
Gasoline (petrol)	5-12	40–175	motor car fuel
Kerosene	12–18	175-300	jets / diesel
Gas oil	18–24	300-400	diesel fuel
Lubricating oil	20–30	non volatile	lubricants
Paraffin wax	25–40	solid	candles
Bitumen / tar	> 30	solid	road surfaces

(b) $C_{12}H_{26} \rightarrow C_8H_{18} + 2C_2H_4$ (or C_4H_8) [1] (must show an alkene for mark). Octane for car engines and alkenes for polymers. [2]

Total [10 marks]

[3]

OPTION G – MODERN ANALYTICAL CHEMISTRY

G1.	(a)	(i)	The positive molecular ion or M^+ / parent ion. The molecular formula of compound A is $C_9H_{10}O$ (Accept "the relative molecular mass of compound A is 134".)	[1] [1]
		(ii)	Due to the presence of 13 C isotopes in the compound.	[1]
		(iii)	105 due to $(M-C_2H_5)^+ / (C_7H_5O^+)$ (also accept $(M-CHO)^+ / (C_2H^+)$)	[1]
			(<i>uso accept</i> (M=CHO) \neq (C ₈ H ₉)) 77 due to (M=C ₃ H ₅ O) ⁺ / C ₆ H ₅ ⁺ (<i>must have</i> + sign to gain mark, but only penalize once if omitted)	[1]
	(b)	(i)	It contains a carbonyl / either alkanal or alkanone / $C = O$ group. (Do not accept acid or ester.)	[1]
		(ii)	C-H bond vibration (in alkanes, alkenes, arenes)	[1]
		(iii)	It does not contain an alkanol or phenol group / no -OH group present.	[1]
	(c)	(i)	Molecular formula: SiC_4H_{12} (accept $Si(CH_3)_4$)	[1]
			 (Award [1] each for any two from the following:) Gives a sharp single peak; Strong peak as 12 protons in identical environment; Volatile so can be easily removed from the sample afterwards; Occurs well away from other peaks (which are shifted downfield from it). 	[2]
		(ii)	They are in the ratio $3:2:5$ (since there are only 10 protons this is the actual number).	[1]
		(iii)	It contains $(-C_2H_5)$ group / a $-CH_3$ group next to a $-CH_2$ - group The $-C_2H_5$ - group is attached to a C atom containing no other H atoms bonded to it.	[1] [1]
		(iv)	It contains an aromatic (benzene) ring.	[1]

continued...

Question G1 continued

(Give [1] for correctly showing aromatic ring and [1] for $-C - C_2 H_5$ group.) [2]

Total [17 marks]

G2.	(a)	The five d orbitals are split into different levels. When an electron is excited from a lower to a higher level it absorbs light/energy. The wavelength of the transmitted light / complementary colour lies in the visible region of the spectrum.	[1] [1] [1]
	(b)	A spectrum is run with the copper(II) sulfate solution to determine the wavelength of maximum absorption / λ_{max} . The standard solution is diluted to give several solutions of different known concentrations.	[1] [1]
		The absorbance for each of these solutions at a fixed wavelength / λ_{max} is recorded. A calibration curve of absorption versus concentration is plotted. The absorption of the unknown solution is recorded at the same wavelength and the concentration obtained from the graph.	[1] [1] [1]

Total [8 marks]

OPTION H – FURTHER ORGANIC CHEMISTRY

H1. (a)
$$C_6H_6 + Br_2 \rightarrow C_6H_5Br + HBr$$
 [1]
OR $H_2 \rightarrow Br + HBr$

(c) Electrophile: Br^+ [1]

$$Br - Br \qquad AlBr_3 \rightarrow Br^+ + AlBr_4^- \qquad \qquad [1]$$

(e)	Phenol is more reactive than benzene.	[1]
	No halogen carrier necessary for the reaction to proceed.	[1]
	A pair of electrons on the oxygen atom delocalises with the π electrons in the ring	
	which increases the electron density on the ring (thus attracting electrophiles more	
	readily).	[1]
	Br	

[1]

(ii) They rotate the plane of polarised light in opposite directions. [1]
 Due to the presence of an asymmetric carbon atom / enantiomers / chirality. [1]

Total [6 marks]

$$H - \begin{array}{c} C \\ C \\ + \end{array} \begin{array}{c} C \\ + \end{array} \end{array} \begin{array}{c} C \\ + \end{array} \end{array} \begin{array}{c} C \\ + \end{array} \begin{array}{c} C \\ + \end{array} \end{array} \begin{array}{c} C \\ + \end{array} \begin{array}{c} C \\ + \end{array} \begin{array}{c} C \\ + \end{array} \end{array}$$

OR primary carbocation

tertiary carbocation

Tertiary more stable[1]due to electron donating / positive inductive effect of the alkyl group.[1]

OR
$$R \rightarrow \overset{+}{\underset{R}{\overset{} \leftarrow}} R \qquad > \qquad \begin{array}{c} R \rightarrow \overset{+}{\underset{H}{\overset{} \leftarrow}} H \\ & H \end{array}$$

Total [8 marks]