

CHEMISTRY HIGHER LEVEL PAPER 1

Tuesday 13 November 2001 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

Periodic Table

1 H 1.01				Atomic	Number												2 He 4.00
3 Li 6.94	4 Be 9.01			Atomi	c Mass							5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30
55 Cs 132.91	56 Ba 137.34	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.21	77 Ir 192.22	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 Tl 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs	109 Mt									
		÷	50	50	(0)	(1	(2)	(2)	(1	65		(7	(0)	(0)	70	71	

Ť	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.12	140.91	144.24	146.92	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97
**	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.04	231.04	238.03	(237)	(242)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(259)	(260)

N01/420/H(1)

- 2 -

1.

 $PbS(s) + O_2(g) \rightarrow PbO(s) + SO_2(g)$

The reaction of lead(II) sulfide with oxygen at high temperatures is represented by the unbalanced equation above. What is the sum of the coefficients in the **balanced** equation?

A. 4

- B. 5
- C. 8
- D. 9

2. 8.0 g of a pure compound contains 3.2 g of sulfur and 4.8 g of oxygen. What is its empirical formula?

- A. SO
- B. SO₂
- C. SO₃
- D. S_2O_3

3.

 $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

Powdered zinc reacts with Cu^{2+} ions according to the equation above. What will be the result of adding 3.25 g of Zn to 100 cm³ of 0.25 mol dm⁻³ CuSO₄ solution?

- A. All the Cu^{2+} ions react and some solid zinc remains.
- B. All the Cu^{2+} ions react and no solid zinc remains.
- C. All the solid zinc reacts and Cu^{2+} ions remain.
- D. Neither solid zinc nor Cu^{2+} ions remain.

- Number of Number of Number of Particle protons neutrons electrons W 11 12 10 Х 12 12 12 Y 12 13 12 Ζ 13 14 10
- 4. Consider the composition of particles W, X, Y, Z below. Which two particles are isotopes of the same element?

- A. W and X
- B. X and Y
- C. Y and Z
- D. W and Z

5. In which of the following ground-state electron configurations are unpaired electrons present?

- I. $1s^2 2s^2 2p^2$
- II. $1s^2 2s^2 2p^3$
- III. $1s^2 2s^2 2p^4$
- A. II only
- B. I and II only
- C. II and III only
- D. I, II and III

- 5 -
- **6.** Which atom or ion has the electron configuration:

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^7 \, ? \\$

- A. Co
- B. Mn
- C. C0²⁺
- D. Fe^{3+}
- 7. When the species Br, Br^+ and Br^- are arranged in order of increasing size (smallest first), what is the correct order?
 - A. $Br < Br^+ < Br^-$
 - B. $Br < Br^- < Br^+$
 - C. $Br^+ < Br < Br^-$
 - D. $Br^- < Br < Br^+$
- 8. When sodium oxide and sulfur dioxide are added to separate test tubes containing water, the solutions will be, respectively,
 - A. acidic and acidic.
 - B. acidic and basic.
 - C. basic and basic.
 - D. basic and acidic.

9.
$$Fe(H_2O)_6^{3+}(aq) + 6CN^{-}(aq) \rightarrow Fe(CN)_6^{3-}(aq) + 6H_2O(1)$$

In the equation above the cyanide ions act as

- A. Brønsted bases.
- B. Lewis acids.
- C. ligands.
- D. reducing agents.
- 10. The geometry and bond angle of the sulfite ion (SO_3^{2-}) are best described as
 - A. pyramidal, 107° .
 - B. tetrahedral, 109°.
 - C. bent, 104° .
 - D. trigonal planar, 120° .

11. As the size of the halogen molecules, X_2 , increases down the group, their boiling points

- A. decrease due to decreasing electronegativity.
- B. decrease due to decreasing bond energies.
- C. increase due to increasing permanent dipole-dipole attraction.
- D. increase due to increasing van der Waals' forces.
- 12. The length of the bond between carbon and oxygen is shortest in
 - A. CO.
 - B. CO_2 .
 - C. CH₃CH₂OH.
 - D. CH₃CHO.

13. What type(s) of hybridisation is/are used by carbon in the following compound?

- A. sp^2 only
- B. sp and sp^2
- C. sp and sp^3
- D. sp^2 and sp^3

14. In which species can the bonding **not** be described in terms of the delocalisation of π electrons?

- A. $CH_3CH_2O^-$
- B. $CH_3CO_2^-$
- C. O₃
- D. NO_3^-

15. When the pressure is increased at constant temperature, the particles in a gas will

- A. become smaller.
- B. become larger.
- C. move faster.
- D. be closer together.

- **16.** Which quantity will **not** change for a sample of gas in a sealed rigid container when it is cooled from 100 °C to 75 °C at constant volume?
 - A. The average energy of the molecules
 - B. The average speed of the molecules
 - C. The pressure of the gas
 - D. The density of the gas
- 17. When solid ammonium nitrate, $NH_4NO_3(s)$, dissolves in water, the temperature decreases. Which statement about the dissolving of ammonium nitrate in water is correct?
 - A. It is endothermic with ΔH greater than zero.
 - B. It is endothermic with ΔH less than zero.
 - C. It is exothermic with ΔH less than zero.
 - D. It is exothermic with ΔH greater than zero.

18.
$$O_2(g) \rightarrow 2O(g)$$
 $\Delta H = 498 \text{ kJ}$
 $3O_2(g) \rightarrow 2O_3(g)$ $\Delta H = 284 \text{ kJ}$

Using the information above, what is ΔH for the following equation in kJ?

 $O_3(g) \rightarrow 3O(g)$

- A. 214
- B. 356
- C. 463
- D. 605

- 19. Which change leads to a decrease in entropy for the system?
 - A. Solid ammonium chloride sublimes.
 - B. Sodium corrodes in air.
 - C. Potassium nitrate dissolves in water.
 - D. Two inert gases mix at constant temperature and pressure.
- 20. A certain reaction is spontaneous at low temperatures but becomes non-spontaneous as the temperature is raised. Based on this information, what are the signs of ΔH and ΔS ?

-9-

	ΔH	ΔS
A.	+	+
B.	+	_
C.	_	+
D.	_	_

21.

$$\operatorname{Sn}(s) + 2\operatorname{Fe}^{3+}(\operatorname{aq}) \to \operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{Fe}^{2+}(\operatorname{aq})$$

Tin metal reacts with aqueous Fe^{3+} ions according to the equation above. Which of the following factors will increase the rate of this reaction?

- I. Increasing the Fe^{3+} ion concentration
- II. Decreasing the size of the tin pieces
- A. I only
- B. II only
- C. Both I and II
- D. Neither I nor II

22. Use the information below to deduce the rate equation for the hypothetical reaction;

[X] / mol dm ⁻³	[Y] / mol dm ⁻³	Relative rate
0.01	0.01	1
0.02	0.01	4
0.02	0.02	4

 $X + Y \rightarrow Z$

- A. Rate = k[X][Y]
- B. Rate = $k[X]^2$
- C. Rate = $k[Y]^2$
- D. Rate = $k[X]^2[Y]^2$
- **23.** The reaction between NO_2 and CO to give NO and CO_2 is thought to occur by the following mechanism:

$NO_2 + NO_2 \rightarrow NO + NO_3$	slow
$NO_3 + CO \rightarrow NO_2 + CO_2$	fast

What is the rate equation?

- A. Rate = $k[NO_2][CO]$
- B. Rate = $k[NO_3][CO]$
- C. Rate = $k[NO_2]^2[CO]$
- D. Rate = $k[NO_2]^2$

N01/420/H(1)

24. Which statement(s) is(are) correct about the effect of adding a catalyst to a system at equilibrium?

- I. The rate of the forward reaction increases.
- II. The rate of the reverse reaction increases.
- III. The yield of the products increases.
- A. I only
- B. III only
- C. I and II only
- D. I, II and III

25.

$N_2O_4(g) \rightleftharpoons 2NO_2(g)$ $K_c = 5.0 \times 10^{-3}$

In an equilibrium mixture of these two gases, $[N_2O_4] = 5.0 \times 10^{-1} \text{ mol dm}^{-3}$. What is the equilibrium concentration of NO₂ in mol dm⁻³?

- A. 5.0×10^{-1}
- B. 5.0×10^{-2}
- C. 5.0×10^{-3}
- D. 2.5×10^{-4}

- 26. Which of the isomers of hexane has the highest boiling point?
 - A. CH_3 — CH_2 — CH_2 — CH_2 — CH_2 — CH_3
 - B. CH_3 CH_2 CH_2 CH_2 CH_3 CH_3
 - C. CH_3 CH CH CH_3 CH_3 CH_3 CH_3 CH_3
 - D. CH_3 — CH_2 — CH_3 CH_3 — CH_3 — CH_3
- 27. A Brønsted-Lowry base is defined as a substance which
 - A. accepts H^+ ions.
 - B. produces OH^- ions.
 - C. conducts electricity.
 - D. donates protons.
- **28.** A 0.1 moldm⁻³ solution of a weak acid has a pH = 3.0. What is K_a for this acid?
 - A. 1×10^{-1}
 - B. 1×10^{-3}
 - C. 1×10⁻⁵
 - D. 1×10⁻⁶

29. The acid HA has an acid dissociation constant, K_a , in aqueous solution. What is the equilibrium constant for the reaction below?

 $A^{-}(aq) + H_2O(l) \rightleftharpoons HA(aq) + OH^{-}(aq)$

- A. $\frac{K_{\rm w}}{K_{\rm a}}$
- B. $\frac{K_{\rm a}}{K_{\rm w}}$
- C. K_{a}
- D. $\frac{1}{K_a}$
- **30.** Which statement best describes the difference between solutions of strong and weak acids of equal concentration?
 - A. Weak acid solutions have lower pH values than strong acids.
 - B. Weak acid solutions react more slowly with sodium carbonate than strong acids.
 - C. Weak acid solutions require fewer moles of base for neutralisation than strong acids.
 - D. Weak acid solutions do not react with magnesium while strong acids do.
- **31.** What is the oxidation number of phosphorus in NaH_2PO_4 ?
 - A. +3
 - B. -3
 - C. +5
 - D. -5

- 32. Which of the following is **not** an oxidation–reduction reaction?
 - A. $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$
 - B. $Mg(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2(g)$
 - C. $3MnO_4^{2-}(aq) + 4H^+(aq) \rightarrow MnO_2(s) + 2MnO_4^-(aq) + 2H_2O(l)$
 - D. $2CrO_4^{2-}(aq) + 2H^+(aq) \rightarrow Cr_2O_7^{2-}(aq) + H_2O(l)$
- 33. Use the standard electrode potentials below to determine which of the following statements is correct.

$$Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq) \qquad E^{\ominus} = 0.15 V$$

Fe³⁺(aq) + e⁻ \rightarrow Fe²⁺(aq) $E^{\ominus} = 0.77 V$

- A. $Fe^{2+}(aq)$ can spontaneously reduce $Sn^{4+}(aq)$.
- B. $\operatorname{Sn}^{2+}(\operatorname{aq})$ is a better reducing agent than $\operatorname{Fe}^{2+}(\operatorname{aq})$.
- C. These two half-reactions can be combined to produce a cell with $E^{\ominus} = 0.92$ V.
- D. The $\text{Fe}^{3+}(\text{aq})/\text{Fe}^{2+}(\text{aq}) E^{\Theta}$ value must be multiplied by two when calculating the cell voltage for a reaction between Fe^{3+} and Sn^{2+} .
- **34.** Two moles of electrons are passed through an electrolytic cell containing molten sodium chloride. The same charge is passed through a second cell containing aqueous sodium chloride. In both cells the electrodes are made of platinum. Which statement is correct?
 - A. One mole of sodium metal will be formed in the first cell.
 - B. Chlorine gas will be formed at the cathodes of both cells.
 - C. One mole of hydrogen gas will be formed in the second cell.
 - D. One mole of oxygen gas will be formed at the anode of the second cell.

- **35.** Which of the following is an amine?
 - A. CH₃CH₂NH₂
 - B. CH₃CONH₂
 - C. $-[CH_2CONHCH_2CO]_{\overline{n}}$
 - D. $CH_3CH_2C = N$

36.
$$CH_3OH + CH_3CH_2COOH \xleftarrow{H^+} CH_3CH_2COOCH_3 + H_2O$$

The forward reaction represented by the equation above is

- A. addition.
- B. esterification.
- C. hydrolysis.
- D. oxidation.
- **37.** Which will be the main product when ethanol reacts with excess concentrated phosphoric acid?
 - A. Ethene
 - B. Methoxymethane
 - C. Ethanoic acid
 - D. Ethanal

The low resolution ¹H-NMR spectrum shown above could be given by

- A. CH₃OH.
- B. CH₃CH₂OH.
- C. HCHO.
- D. HCOOH.
- **39.** Which substance dissolves in water to give a neutral solution?
 - A. CH₃COOH
 - B. CH₃COONa
 - $C. \quad CH_3CH_2NH_2$
 - D. CH₃CONH₂
- **40.** Which one of the following **cannot** be obtained by oxidising 2-methylpropan-1-ol under suitable conditions?
 - A. An alkanal
 - B. An alkanone
 - C. An alkanoic acid
 - D. Carbon dioxide and water