

MARKSCHEME

May 2001

CHEMISTRY

Higher Level

Paper 3

16 pages

OPTION C – HUMAN BIOCHEMISTRY

- **C1.** (a) Chemical messenger / OWTTE
 - (b) (i) Testes

(Note: Do not award [1] for ovaries, since in humans the production of testosterone by the ovaries is extremely low in comparison with the testes.)

(ii) Use (*e.g.* treatment of wasting illness / to regain muscle tissue, treatment of eczema) [1];
 Abuse (*e.g.* increase muscle mass to enhance performance / increase strength) [1];

Second use or second abuse [1].

(c) Two groups circled correctly [1]; Two correct corresponding names[1].

Accept any two from the following:

- Alkanol / alcohol / hydroxyl;
- Alkene;

(d)

• Alkanone / ketone / carbonyl.

(Do not accept CH₃/methyl/alkyl group or 'hydroxide')

- Allow any one from:
 - Cholesterol has an OH group instead of the C = O group in testosterone;
 - Cholesterol has an alkyl/hydrocarbon side-chain instead of the OH group in testosterone;
 - There is no carbonyl group present in cholesterol;
 - The position of the C = C bond is different in cholesterol compared to testosterone.

(Or any other correct answer, relating to structural differences.)

[1 max]

[1]

[1]

[2 max]

[3 max]

C2. (a) Glycerol / propane-1,2,3-triol (accept correct structure). [1] (b) Fatty acid(s) / salt of acid / soap / carboxylic acid / alkanoic acid / carboxylate. [1] (c) Heat with base / alkali / KOH / NaOH (both needed). [1] (d) Heat produced = $(mass \times specific heat capacity \times \Delta T)$ (can be scored by implication) [1]; $=(500\times4.18\times67.5)/1/;$ =141.075 / 141075 J/1/. Calorific value of bar = $\frac{50.0}{10.0} \times 141.075$; = 705.4 (kJ) / 705 (kJ) (accept correct value in J) [1]. [4 max] **C3.** (a) Hydrogen bond *[1]*; Two H-bonds shown between T and A [1]; Three H-bonds shown between C and G [1]; Deoxyribose and phosphate (*both needed*) [1];

- Phosphate on one nucleotide bonds to (OH of) deoxyribose on the next nucleotide [1];
- Condensation reaction / by covalent bonding [1].

[6 max]

- (b) Award [1] each for any four of the following points:
 - Separate DNA from other material [1];
 - Cut DNA up (using restriction enzymes) [1];
 - Separate by electrophoresis [1];
 - Method of detection (e.g. UV, radioactive probe, X-ray) [1].

[4 max]

-7-

OPTION D – ENVIRONMENTAL CHEMISTRY

- **D1.** (a) Water / CFCs / dinitrogen oxide (N_2O or nitrous oxide / O_3 / HCFCs / HFCs / SF₆). [1] (Accept correct formula instead of a name). (b) (i) Any two sources, [1] each e.g. Respiration (by animals) / decay of plants or animals / oxidation of soil humus / forest fires caused by lightning / volcanoes / combustion of fossil fuels and wood / burning trash (rubbish). [2 max] (ii) Any two sources, [1] each e.g. Bacterial fermentation / bogs or marshes / digestive tracts of ruminants. Rotting waste in land-fill sites. [2 max] (c) • Lower energy / longer wavelength / infrared radiation from the Earth [1]; Greenhouse gases absorb / retain / trap this energy [1]; Some reference to how the gases absorb this energy *e.g.* vibration [1]. [3 max] **D2.** (a) • Solid objects / example of this (*e.g.* rock) [1]; (i) • Grids / screens / sand bed (*do not accept filter*) [1]. [2 max] (ii) • Metal ions / phosphate [1]; • Alkali / sulfide / Ca²⁺ / calcium ions (accept a named calcium compound) [1]. [2 max] (b) (i) Any two of the following [1] each
 - Similar anti-bacterial action achieved with smaller [O₃];
 - O₃ more effective than Cl₂ (against waterborne viruses);
 - O₃ imparts no chemical taste to water;
 - O₃ does not form harmful chlorine containing organic compounds.

[2 max]

(ii) O₃ must be produced on site (because of high reactivity) / O₃ has a shorter retention time. [1]

- **D3.** NO_x produced in the exhaust gases [1];
 - Sunlight converts the oxides of nitrogen into oxygen radicals (oxygen atoms) / NO_x + sunlight → O• [1];
 - The oxygen atoms react with hydrocarbons in the exhaust gases / $O + HC \rightarrow [1]$;
 - This reaction produces alkanals [1];
 - Which form PAN / peroxyacylnitrates[1].

Any two of the following, **[1]** *each* Cause irritation of the eyes / respiratory problems / damage to plants.

Numerous answers are possible here, all [1] each:

- Use catalytic converters which convert oxides of nitrogen into harmless nitrogen;
- Less car usage;
- Change to othr fuels *e.g.* electric.

[10 max]

OPTION E – CHEMICAL INDUSTRIES

E1.	(a)	(a) Heats the furnace / OWTTE [1].			
	Any valid reaction involving coke, <i>e.g.</i> reduces iron oxide / is converted to car monoxide [1].				
			[2 max]		
	(b)	 (i) Oxygen is blown through (the molten iron). (<i>Do not accept 'air' here</i>) [1]; It oxidises / converts the carbon into carbon dioxide gas (which escapes) [1]. 	[2 max]		
		 (ii) Calcium oxide / lime is added (to the molten iron). (<i>Allow limestone</i>) [1]; Calcium oxide reacts (with the silica) to form calcium silicate / slag [1]. 	[2 max]		
E2.	(a)	Any appropriate equation (<i>must have alkane and alkene as products</i>) [1]; One use of an alkane (<i>e.g.</i> fuel) [1]; One use of an alkene (<i>e.g.</i> polymer or name of polymer) [1].	[3 max]		
	(b)	(i) Silica / aluminium oxide / zeolites.	[1]		
		(ii) Heat / high temperature / temperature above $300 \degree C$;	[1]		
	(c)	Catalytic cracking produces a mixture of alkanes and alkenes [1]; Hydrocracking produces alkanes only [1].			
			[2 max]		
E3.	Any reasonable answer <i>e.g.</i> the products of refining are flammable and hence there is a risk of fire. [1]				
	Any reasonable answer <i>e.g.</i> the gas produced in the furnace must not be released as it contains poisonous carbon monoxide. [1]				
E4.	1 mo At hi	$d(g) \rightarrow 2 \mod(g)$ so ΔS^{\ominus} increases / entropy change positive [1]; igher T, ΔG^{\ominus} becomes more negative as $T\Delta S^{\ominus}$ becomes greater [1];	[2 max]		

500 K C \rightarrow CO₂ more negative ΔG^{\ominus} 2000 K C \rightarrow CO more negative ΔG^{\ominus} [1]; More negative ΔG^{\ominus} favoured [1].

[2 max]

E5. Cathode half-reaction: $2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$ (state symbols not needed) [1]; Anode half-reaction: $2Cl^-(aq) \rightarrow Cl_2(g) + 2e^-$ (state symbols not needed) [1];

[1] each for any three of the following: <u>Porous</u> membrane; Aqueous electrolyte / brine; Positive electrode / anode: titanium graphite; Negative electrode / cathode: steel.

Any reasonable advantage and disadvantage [1].

[6 max]

OPTION F – FUELS AND ENERGY

F1.	(a)	(i)	1 %	[1]
		(ii)	Inappropriate wavelengths [1]; Reflected / heats the surface / not all areas covered by plants [1]. [2]	max]
	(b)	(i)	Photosynthesis.	[1]
		(ii)	$6H_2O + 6CO_2 \rightarrow C_6H_{12}O_6 + 6O_2$ (No marks if not balanced.)	[1]
	(c)	(i)	 Any two of the following, [1] each Combustion; Production of biogas; Production of ethanol / fermentation. 	max]
		(ii)	(Allow [1] for any reasonable advantage and [1] for any reasonable disadvantage.)	[2]
	(d)	(i)	 Heat [1]; Pressure [1]; Absence of oxygen [1]. [3 r 	max]
		(ii)	 Any three of the following, [1] each Specific example of pollution (e.g. oil spills); Cost of production / transport; Non-renewable; More valuable as a feedstock. 	max]

[2 max]

(b) Converts solar energy to electricity [1]; Si or Ge [1]; Doped with group 5/As or other example [1]; Doped with group 3/B or other example [1]; Light stimulates electron flow [1].

If mention n-type and p-type but do not explain, award only [1] of the [2] doping marks.

Any reasonable advantage and disadvantage [1].

[6 max]

(c) voltage depends on materials used [1];Power depends on the quality of materials [1].

[2 max]

OPTION G – MODERN ANALYTICAL CHEMISTRY

G1.	(a)	Mass spectrometry.	[1]
	(b)	Chlorine exists as two isotopes .	[1]
	(c)	II: ${}^{37}\text{Cl}^+$ [1] IV: $({}^{35}\text{Cl} - {}^{37}\text{Cl})^+$ [1]	[2 max]
	(d)	The ratio of the isotopes is 1:3/25 % ³⁷ Cl and 75 % ³⁵ Cl [1]; This is the ratios of the peak heights/intensities [1]. (Graph must be referred to for second mark.)	[2 max]
	(a)	(i) Dryhambarding with alastrong	[2 mux]
	(e)	(1) By bombarding with electrons.	[1]
		(ii) The molecular mass of the compound.	[1]
G2.	(a)	<i>d</i> to <i>d</i> transitions / transitions within the <i>d</i> sub-level.	[1]
	(b)	X-ray crystallography.	[1]

G3. (a)
$$H^{O}_{H}$$
 [1];

O = C = O (accept linear shape without double bond) [1]; Bond length changes / stretching [1]; Bond angle changes / bending [1]; Dipole moment changes [1].

[5 max]

(b) (i) $CH_3CH_2OCH_2CH_3$ / ethoxyethane / diethylether [1];

- No broad brand at $3230 2550 \text{ cm}^{-1}$ / no OH present [1];
- Therefore not alkanol or acid [1];
- No absorption 1680 1750 cm⁻¹ / C=O present [1];
- Therefore not acid or ester [1].

(ii) $CH_3CH_2CO_2H$ has absorptions at 2500–3300 and 1680–1750 cm⁻¹ [2]; $CH_3CH_2CH_2OH$ has an absorption at 3230–3550 cm⁻¹ [1]; $CH_3CH_2CO_2CH_2CH_3$ has an absorption at 1680–1750 cm⁻¹ [1].

[4 max]

[6 max]

(Award [1] for each correct structure. Use ECF where possible if straight chain C_5 molecules given)

[4 max]

(ii) Structural: A and D / A and B / A and C / B and D / C and D [1].

Geometrical: **B** and **C** [1].

[2 max]

Correct structure [1]. Chiral centre marked [1].

(c) No rotation (in either but-2-ene or cycloalkanes) [1];
 Without breaking the π component (in but-2-ene) and the ring (in cycloalkanes) [1];
 (Both points are needed for the second mark here.)

[2 max]

[1]

[2 max]

(d) More strain / bond angles $< 109.5^{\circ}$.

Structures for nitrophenols, [1] each.

Structure for dinitrophenol/trinitrophenol (Only one of structures above is needed.) [1] In phenol, lone pair of electrons on oxygen overlaps with delocalised ring [1]. Activates the ring / attracts electrophiles or NO_2^+ more strongly / increases electron density [1].

[5 max]

(b) Nitro group is electron-withdrawing [1]; Bond polarity of O—H increased / more H⁺ ions released [1];
Z has the most electron-withdrawing groups [1]; Correct reference to the stability of the anion [1].

[4 max]