

MARKSCHEME

May 2001

CHEMISTRY

Higher Level

Paper 2

14 pages

SECTION A

(a)	(i) Tl					[1]
	(ii) Mn ²⁺ (accept Mn)					[1]
	(iii) Any two of N, P, As, St	, Bi				[1]
(b)	Lines (may be shown on diagonal Convergence at high frequent diagram) [1] Electron transfer between end differences / $\Delta E = hv$ [1]	cy / energy / s		-	· ·	
(c)	remaining electrons in one shell / Li^+ has one less shell or converse [1] effective nuclear charge (Li^+) greater than that of the atom [1]			[2 max]		
(d)	 Any two of the following, [1] e Do not form bonds Full outer shells No attraction for electrons Stable / inert / do not react 	ach				[2 max]
(a)		Pt Cl	N	Н		

	Pt	Cl	Ν	Н	
Divide by $A_{\rm r}$ values					[1]
No. of moles	0.3332	0.6666	0.667	2	[1]

Empirical formula PtCl₂N₂H₆ [1]

1.

2.

- (b) Accept any diagram that shows two Cl atoms attached to Pt and two NH_3 groups attached to Pt. (Allow ECF from (a)).
- (c) Moles of $AgNO_3 = 0.0162 \times 0.102 = 0.00165$ [1] Moles of $NaCl = 0.0148 \times 0.125 = 0.00185$ [1] Therefore limiting reactant is $AgNO_3 / 0.00165$ moles AgCl produced [1] Mass of AgCl produced = $0.00165 \times 143.32 = 0.236$ (accept values in range 0.236 - 0.237 g) [1] [4 max]

If the wrong limiting reagent is used (NaCl), 0.265 g scores [3]. (N.B. Error carried forward; other routes are possible for the deduction that $AgNO_3$ is limiting / moles $AgCl = moles AgNO_3$)

[3 max]

[1]

[2 max]

(a) (i) Energy / enthalpy change for the formation of 1 mol of a compound [1] from its elements in their standard states / 101 kPa, 298K [1] [2 max]

(ii)
$$3C(s) + 4H_2(g) \rightarrow C_3H_8(g)$$
 [1]

(b) (i) Reference to (particular) bonds in a range of compounds / average values [1] Break or make 1 mole of bonds in gaseous state = [2(C-C)+8(C-H)+5(O=O)]-[6(C=O)+8(O-H)] [1] = [2(348)+8(412)+5(496)]-[6(743)+8(463)] [1] * = -1690 [1] (units not required) [5 max]

(N.B. correct extraction of **five** bond enthalpy values (even with wrong coefficients) would score [1])

(ii) Positive [1] Increase in disorder / less order / more gas (on RHS) [1] [2 max]

 4. (a) (i) Any two of the following, [1] each Some mention of a reversible reaction /⇒ etc. Indication that rate of left to right = rate right to left At equilibrium no net change in concentration of reactants and products Closed system [2 max]

- (ii) $K_{c} = \frac{[CH_{3}CO_{2}C_{2}H_{5}][H_{2}O]}{[CH_{3}CO_{2}H][C_{2}H_{5}OH]}$ [1]
- (iii) $[C_2H_5OH] = [CH_3CO_2H] = 0.33$ [1]

3.

 $K_{\rm c} = 4.1$ (accept 4.0) [1]

(Allow for ECF from (ii))

- (b) K_{w} increases with temperature rise / [H⁺] or [OH⁻] rises as temperature rises [1] Equilibrium shifts to right (as temperature increases) [1] [3 max] Endothermic reaction [1]
- (c) (i) No effect [1] Some description of role of catalyst *e.g.* increases rate of forward and reverse reaction (equally) / increases rate of attainment of equilibrium [1] [2 max]
 - (ii) No effect [1] Concentration of reactants the same [1] [2 max]

-7-

SECTION B

5.	(a)	Cher Met	ume of gas method: micals in flask / beaker [1] hod of collection [1] ight [1]	or	Mass loss method: Chemicals in flask / beaker [1] Top pan balance [1] Not airtight [1]		
		Volu Timi App	surement and processing: ume / mass monitoring [1] ing [1] ropriate processing of data [1]				
		<i>e.g.</i> convert time to rate / rate = $\frac{1}{\text{time}}$ / plot volume–time graph and measure slope [6]					
	(b)	-	be decreases / slope becomes le l / reactant concentration falls / s	-	lecreases [1] nagnesium / reactant decreases [1]	[2 max]	
	(c)	(i)	half height [1]	half the height	of A / explain why curve goes to quent collisions between reactant	[3 max]	
		(ii)	For line C: Curve shown steeper than A Curve becomes horizontal at Magnesium surface area in reactant particles [1]	same height as	A [1] ore frequent collisions between	[3 max]	
	(d)		er = 1 / first order [1] e proportional to concentration	/ graph is straig	ght line [1]	[2 max]	
	(e)	Rate	$e = k[H_2SO_4] [1]$				
		e.g.	$k = \frac{0.008}{0.9} \left/ \frac{0.006}{0.675} \right/ \approx 8.9 \times 10^{-5}$	³ [1] (accept)	answer $\pm 2 \times 10^{-3}$)		
		s^{-1}	<i>1]</i> value of <i>k</i> would be greater at	a higher tempe	rature [1]	[4 max]	

(f) Diagram:

Line for products below line for reactants [1] ΔH marked on vertical distance between reactants line and products line [1] y axis label and x axis label or reactant and product labels [1] E_a marked on vertical distance between reactants line and intermediate / transition state [1]

 E_{cat} marked on vertical distance between reactants line and catalyst intermediate / transition state [1] [5 max]

Energy/enthalpy reactants ΔH products

reaction coordinate/progress of reaction / time / reaction path (If reaction is shown as endothermic, award [4 max])

6. (a) **Brønsted–Lowry**: acid is proton (H^+) donor and base is proton acceptor [1]

For example, $HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^-$ [1] (accept other valid example)

Identification of the acid **and** the base on the left hand side [1]

Lewis: acid is electron pair acceptor (electrophile) and base is electron pair donor (nucleophile) [1]

For example, $BF_3 + NH_3 \rightarrow BF_3NH_3 / Cu^{2+} + 4NH_3 \rightarrow Cu(NH_3)_4^{2+}$ [1] (accept other valid example)

Identification of **both** the acid and the base on the left hand side [1]

Bond formed is (dative) covalent / co-ordinate / indication that one species gives bonding electron pair [1] [7 max]

- (b) Strong acid completely dissociated, weak acid weakly / partially dissociated [1] example of strong **and** weak acid (names or formulas) [1] [2 max]
- (c) Molecule and anion equilibrium / HIn ⇒ H⁺ + In⁻ / indicator is a weak acid or weak base [1] Different colours [1] Addition of H⁺ or OH⁻ / acid or alkali causes shift in equilibrium [1] H⁺ → colour A / OH⁻ causes colour B [1] [4 max]

Line starts clearly above pH = 1 *[1]* More of vertical line in alkaline than acidic region *[1]* Phenolphthalein *[1]*

Line starts at pH = 1 / same as printed graph [1] More of vertical line in acidic than alkaline region [1] Methyl orange / methyl red / bromophenol blue / bromothymol blue / bromocresol green [1] [3 max]

(e) (i)
$$CH_3COO^- + H^+ \rightarrow CH_3COOH [1]$$

Added H^+ ions react with conjugate base / CH_3COO^- [1] [2 max]
(ii) $[H^+] = \frac{K_a[CH_3COOH]}{[CH_3COO^-]} / pH = pK_a + \log \frac{[base]}{[acid]} [1]$
Correct values of CH_3COOH and CH_3COO^- mol or moldm⁻³ [1]
Correct value of $[H^+] = 3.48 \times 10^{-5} \pmod{m^{-3}} [1]$
 $pH = 4.4-4.5 \pmod{[H^+]} = 3.48 \times 10^{-5} \pmod{[1]}$ [4 max]

- 12 -

7.	(a)	 a) Oxidation number of Mn on left-hand side 7 [1] Oxidation number of C on left-hand side 3 [1] Oxidation number of Mn and C on right-hand side 2 and 4 respectively [1] 				
		Final equation: $2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$ [2]				
		(If ratio $MnO_4^-: C_2O_4^{2-}$ is 2:5 but equation wrong give [1]. Do not penalise absence of state symbols)	[5 max]			
	(b)	 (i) Diagram must show: Voltmeter and metals [1] Salt bridge correctly labelled [1] [Ni²⁺] and [Cd²⁺] as 1 moldm⁻³ [1] 	[3 max]			
		 (i) H₂ gas At 1 atm / 101.3 kPa 298 K 1 mol dm⁻³ H⁺ (Four correct [2], 2/3 correct [1]) Pt electrode [1] 	[3 max]			
	(c)	(i) $\operatorname{Ni}^{2+}(aq) + 2e^{-} \rightarrow \operatorname{Ni}(s)$ [1] $\operatorname{Cd}(s) - 2e^{-} \rightarrow \operatorname{Cd}^{2+}(aq) / \operatorname{Cd}(s) \rightarrow \operatorname{Cd}^{2+}(aq) + 2e^{-}$ [1] Allow $\operatorname{Cd} + \operatorname{Ni}^{2+} \rightarrow \operatorname{Cd}^{2} + \operatorname{Ni}$ for [2]				
		Cd is oxidised [1] Oxidising agent is Ni ²⁺ (<i>do not accept Ni</i>) [1]	[4 max]			
		(ii) Cd is A [1] External electron flow from Cd to Ni [1].	[2 max]			
		(iii) Overall voltage is 0.2 volts (accept + or -0.2 V) [1] ΔG is negative (consequential on the sign of the potential) [1]	[2 max]			
	(d)	Silver at cathode / - ve [1]Oxygen at anode / + ve [1][]	[2 max]			
	(e)	Number of coulombs = $20 \times 5 \times 60^2 / 360000$ [1] Number of Faradays = 3.73 [1]				
		Moles of $OH^- = 3.73$ [1] Mass of NaOH = $3.73 \times 40 = 149.2$ g [1]	[4 max]			

$$\mathbf{H} \cdot \times \mathbf{C}_{\times \times}^{\times} \mathbf{C} \times \cdot \mathbf{H} \qquad \qquad \underbrace{\overset{\times \overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\times}{\mathbf{C}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}}_{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{C}}} \overset{\overset{\times}{\mathbf{$$

Shapes:

 C_2H_2 linear / straight [1] angle 180° [1]

$$C_2Cl_4$$
 (trigonal) planar [1]
angle 120° [1]

- SF₄ K-shaped / based on trigonal bipyramid / see saw [1] angle 90° [1] angle 120° [1] [10 max]
- (b) sp (C_2H_2) [1] sp² (C_2Cl_4) [1] [2 max]
- (c) Acceptable resonance structures

 CH_3C [1] CH_3C [1]

(accept delocalized ethanoate ion for [2])

[4 max]

(accept delocalized benzene for [2])

(i)	C to O in the ion equal [1] Different bond length in acid [1] C = O < C - O (or converse) [1]		
	C to O in ethanoate ion intermediate bond length / 1.5 bonds [1]	[4 max]	
(ii)	Benzene is stable because of delocalization [1] Addition destroys delocalization [1]	[2 max]	
(iii)	 (iii) (pK_a values show) ethanoic stronger acid than ethanol [1] (Some correct statement about difference in acidity) 		
	Reference to relative stability of (both) anions (they do not have to be shown) [1]		
	Anion of acid more stable $C = O$ group e^- withdrawing / delocalisation of charge (or resonance) in ethanoate ion / explain instability of ethoxide [1]	[3 max]	
	(ii)	 Different bond length in acid [1] C == O < C—O (or converse) [1] C to O in ethanoate ion intermediate bond length / 1.5 bonds [1] (ii) Benzene is stable because of delocalization [1] Addition destroys delocalization [1] (iii) (pK_a values show) ethanoic stronger acid than ethanol [1] (Some correct statement about difference in acidity) Reference to relative stability of (both) anions (they do not have to be shown) [1] Anion of acid more stable C = O group e⁻ withdrawing / delocalisation of 	