BACCALAURÉAT
BACHILLERATO

MARKSCHEME

May 2001

CHEMISTRY

Higher Level

Paper 2

SECTION A

1. (a) (i) Tl
(ii) $\mathrm{Mn}^{2+}($ accept Mn$)$
(iii) Any two of N, P, As, Sb, Bi
(b) Lines (may be shown on diagram) [1]

Convergence at high frequency / energy / short wavelength (may be shown on a diagram) [1]
Electron transfer between energy levels / each transition / line depends on energy differences / $\Delta \mathrm{E}=\mathrm{h} v$ [1]
(c) remaining electrons in one shell/ Li^{+}has one less shell or converse [1] effective nuclear charge $\left(\mathrm{Li}^{+}\right)$greater than that of the atom [1]
(d) Any two of the following, [1] each

- Do not form bonds
- Full outer shells
- No attraction for electrons
- Stable / inert / do not react

2. (a)

	Pt	Cl	N	H	
Divide by A_{r} values					$[1]$
No. of moles	0.3332	0.6666	0.667	2	$[1]$

Empirical formula $\mathrm{PtCl}_{2} \mathrm{~N}_{2} \mathrm{H}_{6}$ [1]
(b) Accept any diagram that shows two Cl atoms attached to Pt and two NH_{3} groups attached to Pt. (Allow ECF from (a)).
(c) Moles of $\mathrm{AgNO}_{3}=0.0162 \times 0.102=0.00165$ [1]

Moles of $\mathrm{NaCl}=0.0148 \times 0.125=0.00185$ [1]
Therefore limiting reactant is $\mathrm{AgNO}_{3} / 0.00165$ moles AgCl produced [1]
Mass of AgCl produced $=0.00165 \times 143.32=0.236 \mathrm{~g}$ (accept values in range $0.236-0.237 \mathrm{~g}$) [1]

If the wrong limiting reagent is used (NaCl), 0.265 g scores [3].
(N.B. Error carried forward; other routes are possible for the deduction that AgNO_{3} is limiting / moles $\mathrm{AgCl}=$ moles AgNO_{3})
3. (a) (i) Energy / enthalpy change for the formation of 1 mol of a compound [1] from its elements in their standard states / $101 \mathrm{kPa}, 298 \mathrm{~K}$ [1]
(ii)

$$
3 \mathrm{C}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})
$$

(b) (i) Reference to (particular) bonds in a range of compounds / average values [1] Break or make 1 mole of bonds in gaseous state

$$
\begin{aligned}
& =[2(\mathrm{C}-\mathrm{C})+8(\mathrm{C}-\mathrm{H})+5(\mathrm{O}=\mathrm{O})]-[6(\mathrm{C}=\mathrm{O})+8(\mathrm{O}-\mathrm{H})][1] \\
& =[2(348)+8(412)+5(496)]-[6(743)+8(463)][1] * \\
& =-1690[1](\text { units not required })
\end{aligned}
$$

(N.B. correct extraction of five bond enthalpy values (even with wrong coefficients) would score [1])
(ii) Positive [1]

Increase in disorder / less order / more gas (on RHS) [1]
4. (a) (i) Any two of the following, [1] each

Some mention of a reversible reaction $/ \rightleftharpoons$ etc.
Indication that rate of left to right $=$ rate right to left
At equilibrium no net change in concentration of reactants and products
Closed system
(ii) $K_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}[1]$
(iii) $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]=\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.33$ [1]
$K_{\mathrm{c}}=4.1(\operatorname{accept} 4.0)[1]$
[2 max]
(Allow for ECF from (ii))
(b) K_{w} increases with temperature rise / $\left[\mathrm{H}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$rises as temperature rises [1] Equilibrium shifts to right (as temperature increases) [1] Endothermic reaction [1]
(c) (i) No effect [1]

Some description of role of catalyst e.g. increases rate of forward and reverse reaction (equally) / increases rate of attainment of equilibrium [1]
(ii) No effect [1]

Concentration of reactants the same [1]

SECTION B

5. (a) Volume of gas method:

Chemicals in flask / beaker [1]
Method of collection [1]
Airtight [1]
or Mass loss method:
Chemicals in flask / beaker [1]
Top pan balance [1]
Not airtight [1]

Measurement and processing:
Volume / mass monitoring [1]
Timing [1]
Appropriate processing of data [1]
e.g. convert time to rate $/$ rate $=\frac{1}{\text { time }} /$ plot volume-time graph and measure slope \quad [6 $\boldsymbol{m a x}$]
(b) Slope decreases / slope becomes less steep / rate decreases [1]

Acid / reactant concentration falls / surface area of magnesium / reactant decreases [1]
(c) (i) For line B:

Curve shown less steep than A [1]
Curve becomes horizontal at half the height of A / explain why curve goes to half height [1]
Acid particles more widely spaced / less frequent collisions between reactant particles [1]
(ii) For line C :

Curve shown steeper than A [1]
Curve becomes horizontal at same height as A [1]
Magnesium surface area increased / more frequent collisions between reactant particles [1]
(d) $\operatorname{Order}=1$ / first order [1]

Rate proportional to concentration / graph is straight line [1]
(e) Rate $=k\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right][1]$
e.g. $k=\frac{0.008}{0.9} / \frac{0.006}{0.675} / \approx 8.9 \times 10^{-3}[1] \quad$ (accept answer $\pm 2 \times 10^{-3}$)
s^{-1} [1]
The value of k would be greater at a higher temperature [1]
(f) Diagram:

Line for products below line for reactants [1]
ΔH marked on vertical distance between reactants line and products line [1] y axis label and x axis label or reactant and product labels [1]
E_{a} marked on vertical distance between reactants line and intermediate / transition state [1]
$E_{\text {cat }}$ marked on vertical distance between reactants line and catalyst intermediate / transition state [1]

Energy/enthalpy

(If reaction is shown as endothermic, award [4 max])
6. (a) Brønsted-Lowry: acid is proton $\left(\mathrm{H}^{+}\right)$donor and base is proton acceptor [1]

For example, $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-}$[1] (accept other valid example)
Identification of the acid and the base on the left hand side [1]
Lewis: acid is electron pair acceptor (electrophile) and base is electron pair donor (nucleophile) [1]

For example, $\mathrm{BF}_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{BF}_{3} \mathrm{NH}_{3} / \mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}[1]$ (accept other valid example)

Identification of both the acid and the base on the left hand side [1]
Bond formed is (dative) covalent / co-ordinate / indication that one species gives bonding electron pair [1]
(b) Strong acid completely dissociated, weak acid weakly / partially dissociated [1] example of strong and weak acid (names or formulas) [1]
(c) Molecule and anion equilibrium $/ \mathrm{HIn} \rightleftharpoons \mathrm{H}^{+}+\mathrm{In}^{-} /$indicator is a weak acid or weak base [1]
Different colours [1]
Addition of H^{+}or OH^{-}/ acid or alkali causes shift in equilibrium [1]
$\mathrm{H}^{+} \rightarrow$ colour A / OH^{-}causes colour B [1]
(d) (i)

Line starts clearly above $\mathrm{pH}=1$ [1]
More of vertical line in alkaline than acidic region [1]
Phenolphthalein [1]
(ii)

Line starts at $\mathrm{pH}=1 /$ same as printed graph [1]
More of vertical line in acidic than alkaline region [1]
Methyl orange / methyl red / bromophenol blue / bromothymol blue / bromocresol green [1]
(e) (i) $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}$ [1]

Added H^{+}ions react with conjugate base / $\mathrm{CH}_{3} \mathrm{COO}^{-}$[1]
(ii) $\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} / \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{[\text { base }]}{[\text { acid }]}[1]$

Correct values of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{mol}$ or $\mathrm{moldm}{ }^{-3}$ [1]
Correct value of $\left[\mathrm{H}^{+}\right]=3.48 \times 10^{-5}\left(\mathrm{moldm}^{-3}\right)[1]$
$\mathrm{pH}=4.4-4.5$ (consequential on $\left[\mathrm{H}^{+}\right]$value) [1]
7. (a) Oxidation number of Mn on left-hand side 7 [1]

Oxidation number of C on left-hand side 3 [1]
Oxidation number of Mn and C on right-hand side 2 and 4 respectively [1]
Final equation:
$2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$ [2]
(If ratio $\mathrm{MnO}_{4}^{-}: \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ is $2: 5$ but equation wrong give [1]. Do not penalise absence of state symbols)
(b) (i) Diagram must show:

Voltmeter and metals [1]
Salt bridge correctly labelled [1]
$\left[\mathrm{Ni}^{2+}\right]$ and $\left[\mathrm{Cd}^{2+}\right]$ as $1 \mathrm{moldm}{ }^{-3}[1]$
(i) - H_{2} gas

- At 1 atm / 101.3 kPa
- 298 K
- $1 \mathrm{moldm}^{-3} \mathrm{H}^{+}$
(Four correct [2], 2/3 correct [1])
Pt electrode [1]
(c) (i) $\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$ [1]
$\mathrm{Cd}(\mathrm{s})-2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}^{2+}(\mathrm{aq}) / \mathrm{Cd}(\mathrm{s}) \rightarrow \mathrm{Cd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}[1]$
Allow $\mathrm{Cd}+\mathrm{Ni}^{2+} \rightarrow \mathrm{Cd}^{2}+\mathrm{Ni}$ for [2]
Cd is oxidised [1]
Oxidising agent is Ni^{2+} (do not accept Ni) [1]
[4 max]
(ii) Cd is \mathbf{A} [1]

External electron flow from Cd to $\mathrm{Ni}[1]$.
(iii) Overall voltage is 0.2 volts (accept + or -0.2 V) [1]
ΔG is negative (consequential on the sign of the potential) [1]
(d) Silver at cathode / - ve [1]

Oxygen at anode / + ve [1]
(e) Number of coulombs $=20 \times 5 \times 60^{2} / 360000$ [1]

Number of Faradays $=3.73$ [1]
Moles of $\mathrm{OH}^{-}=3.73$ [1]
Mass of $\mathrm{NaOH}=3.73 \times 40=149.2 \mathrm{~g}[1]$
8. (a) Each structure (with non-bonding e^{-}pairs where relevant) [1]
(lines are acceptable instead of pairs of dots/crosses)

Shapes:
$\mathrm{C}_{2} \mathrm{H}_{2}$ linear / straight [1] angle 180° [1]
$\mathrm{C}_{2} \mathrm{Cl}_{4}$ (trigonal) planar [1]
angle 120° [1]
$\mathrm{SF}_{4} \quad \mathrm{~K}$-shaped / based on trigonal bipyramid / see saw [1] angle 90° [1] angle 120° [1]
(b) $\mathrm{sp}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ [1]
$\mathrm{sp}^{2}\left(\mathrm{C}_{2} \mathrm{Cl}_{4}\right)$ [1]
[2 max]
(c) Acceptable resonance structures

(accept delocalized ethanoate ion for [2])

[1]

[4 max]
(accept delocalized benzene for [2])
(d) (i) C to O in the ion equal [1]

Different bond length in acid [1]
$\mathrm{C}=\mathrm{O}<\mathrm{C}-\mathrm{O}$ (or converse) [1]
C to O in ethanoate ion intermediate bond length / 1.5 bonds [1]
(ii) Benzene is stable because of delocalization [1]

Addition destroys delocalization [1]
(iii) ($\mathrm{p} K_{\mathrm{a}}$ values show) ethanoic stronger acid than ethanol [1]
(Some correct statement about difference in acidity)
Reference to relative stability of (both) anions (they do not have to be shown) [1]

Anion of acid more stable $\mathrm{C}=\mathrm{O}$ group e^{-}withdrawing / delocalisation of charge (or resonance) in ethanoate ion / explain instability of ethoxide [1]

