

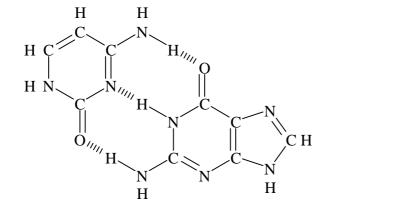
MARKSCHEME

November 2000

CHEMISTRY

Higher Level

Paper 3


[1]

OPTION C – HUMAN BIOCHEMISTRY

C1.	(a)	Retinol will contain an —OH (alkanol) group ([1]). Retinal will contain a —CHO (alkanal) group ([1]). (If both alkanol and alkanal are given but no structures award [1])	[2]
	(b)	Two pairs of electrons (four electrons) between the two carbon atoms.	[1]
	(c)	$M_{\rm r}$ for retinol = $(19 \times 12.01) + (30 \times 1.01) + (1 \times 16.00) = 274.5$ Concentration is 0.30 g dm ⁻³ which is 1.1×10^{-3} mol dm ⁻³ . (accept 1.09×10^{-3} mol dm ⁻³)	[1] [1]
	(d)	More fat soluble. Because the polar O—H bond will be insignificant compared to the bulky non-polar 'tail' of the molecule.	[1] [1]
	OR OR	Because there is a very low concentration (of retinol in the blood). Non-polar hydrophobic chain will be more soluble in fat than polar water.	
C2.	(a)	Iodine.	[1]
	(b)	<i>Any two from:</i> acid, —COOH; amine, $-NH_2$; alkoxyalkane (ether), $-O$; (<i>do not accept amide for</i> $-NH_2$)	[4]
		(Give [1] for each correct name and [1] for each correct formula. Award no marks for C_6H_5 – phenyl.)	
	(c)	Hormones are chemical messengers OR substances that regulate bodily processes such as growth and metabolism.	[1]

- Hormones are transported by the blood stream.
- (d) Thyroxine regulates the rate at which cells use oxygen OR controls the rate of carbohydrate metabolism OR controls rate of protein synthesis and breakdown OR stimulates energy production in cells. [1]

(c) They are held together by hydrogen bonds.

[2]

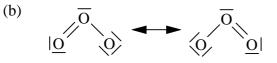
[1]

(Award [1] for correctly showing one or two hydrogen bonds and both marks for showing all three.)

(d)	DNA profiling is the name given to the technique that can identify an individual with a			
	high degree of certainty from a sample of the individual's genetic material.	[1]		
	The lengths of each repeated sequence of bases (minisatellites) can be made visible by			
	the use of DNA probes.	[1]		
	The probe is labelled with radioactive ³² P, mixed with the individuals' DNA and exposed on photographic film (accept radioactive or fluorescent paint) or other suitable			
	method of detection.	[1]		
	Forensic uses (e.g. identifying rapists) OR paternity suits etc.	[1]		

OPTION D – ENVIRONMENTAL CHEMISTRY

D1.	(a)	1000:1 (do not accept 1:1000)									
	(b)	Sulfuric acid (accept sulfuric(IV) acid or sulfurous acid).									
		(No mark if just the formula is given.)									
		$\begin{array}{lll} \mathbf{S} + \mathbf{O}_2 \rightarrow \mathbf{SO}_2 & \mathbf{OR} & 2\mathbf{SO}_2 + \mathbf{O}_2 \rightarrow 2\mathbf{SO}_3 \\ \mathbf{SO}_2 + \mathbf{H}_2\mathbf{O} \rightarrow \mathbf{H}_2\mathbf{SO}_3 & \mathbf{OR} & \mathbf{SO}_3 + \mathbf{H}_2\mathbf{O} \rightarrow \mathbf{H}_2\mathbf{SO}_4 \end{array}$									
	(c)	Nitric acid (accept nitrous acid or nitric(III) acid).									
		(Award [1] each for any two different ways, for example:)									
		 Use a catalytic converter; use a richer petrol:air mixture; car sharing; switching to a different fuel such as solar power or electricity <i>etc</i>; thermal exhaust system; increase the use of public transport. 									
		• increase the use of public transport. $C_2(C_2 + 2U^+ + C_2^{2+} + C_2 + U_2)$ (accept U_C_2)									
	(d)										
		(Accept the full equation with either nitric or sulfuric acid.)									
D2.	(a)	(i) As the temperature increases the solubility of oxygen decreases.	[1]								
		 (ii) As organic pollutants decompose they use up available oxygen so the amount of dissolved oxygen decreases. 									
		(iii) Nitrates and phosphates act as nutrients and increase the growth of algae. As the algae die they use up dissolved oxygen (eutrophication).The BOD is the quantity of oxygen (in ppm) utilised when the organic matter in a fixed volume of water is decomposed biologically over a set time period (usually five days).									
	(b)										
	(c)	Amount of $Na_2S_2O_3$ in 10 cm ³ of 0.100 moldm ⁻³ $Na_2S_2O_3$ is $\frac{10}{1000} \times 0.100 = 1.00 \times 10^{-3}$ moles.	[1] [1]								
		One mole of O_2 reacts to give two moles of MnO_2 which give two moles of I_2 which react with four moles of $S_2O_3^{2-}$ so that the amount of oxygen present in 1000 cm ³ is									
		$\frac{1}{4} \times 1.00 \times 10^{-3} = 2.50 \times 10^{-4}$ moles.									
		Mass of 2.50×10^{-4} moles of O ₂ is $32 \times 2.50 \times 10^{-4} = 8.00 \times 10^{-3}$ g.									


Mass of 2.50×10^{-4} moles of O₂ is $32 \times 2.50 \times 10^{-4} = 8.00 \times 10^{-3}$ g. Concentration of dissolved oxygen is 8.00×10^{-3} g dm⁻³ (or 8 mg dm⁻³). [1]

D3. (a)
$$E = \frac{hc}{\lambda}$$
 for one molecule so that $E = \frac{hcL}{\lambda}$ for one mole of molecules. [1]

$$\lambda = \frac{hcL}{E} = \frac{(6.626 \times 10^{-34}) \times (2.998 \times 10^8) \times (6.022 \times 10^{23})}{4.96 \times 10^5}$$
[1]

$$= 2.41 \times 10^{-7} \text{ m} (241 \text{ nm})$$
[1]

(No double jeopardy if avogadro constant is left out.)

or delocalised structure showing π bond (do not penalise if non-bonding pairs are not shown) [1]

The bond is **weaker** in ozone as it is equivalent to about 1.5 bonds rather than the double bond found in oxygen (so requires less energy/longer wavelength to break). [1]

(c) (i) The CCl_2F_2 is decomposed into chlorine radicals by ultra-violet light.

$$\operatorname{CCl}_2 F_2 \to \operatorname{CClF}_2 + \operatorname{Cl}_2$$

Chlorine radicals react with ozone to form oxygen and a chlorine monoxide radical.

$$Cl \bullet + O_3 \rightarrow Cl O \bullet + O_2$$
 [1]

The chlorine radical is regenerated to react again by reaction of ClO with O•.

$$ClO \bullet + O \bullet \to Cl \bullet + O_2$$
^[1]

(ii) During the Antarctic winter it is thought the very small amounts of water vapour present freeze into ice crystals. [1]
 On the surface of these ice crystals reactions occur to produce species such as Cl₂. When the winter is over the sun converts this into chlorine radicals Cl₂ → 2Cl•.

– 9 –

OPTION E – CHEMICAL INDUSTRIES

E1.	(a)	(i)	Carbon.	[1]				
		(ii)	Contains higher percentage of iron.	[1]				
	(b)	(i)	Oxygen and powdered lime (calcium oxide / calcium carbonate). (do not accept metals such as chromium)	[2]				
		(ii)	The impurities are oxidised OR oxidation takes place. The oxidised impurities combine with the lime to form slag OR an acid–base	[1]				
			reaction takes place (accept equation).	[1]				
	(c)		more expensive to produce aluminium from its ores as it requires more energy n though Al is more abundant in the earth's crust than Fe).	[1]				
E2.	(a)	Cruc acida	le oil was formed from marine organisms which contained sulfur (in their amino s).	[1]				
	(b)		ur can poison many of the catalysts used in the refining processes (by reacting versibly with their reactive sites)	[1]				
	OR	•						
	(c) $C_{10}H_{22} \rightarrow C_8H_{18} + C_2H_4$ (accept other balanced combinations of an alkane and a							
		Larg	<i>alkene</i>). Larger molecules are broken down into smaller more useful molecules (the alkane is used as gasoline and the alkene as feedstock for polymers).					
	(d)		nerisation involves rearrangement to form another isomer. Idation involves the combination of alkanes and alkene (to form higher-grade	[1]				
		gasolines).						
	(e)	(i)	$C_6H_{14} \rightarrow C_6H_6 + 4H_2$	[1]				
		(ii)	Haber process (manufacture of ammonia).	[1]				
E3.	Anode: Ti (or Pt) ([1]). Cathode: steel ([1]). Diaphragm: asbestos ([1]). At anode $2Cl^- \rightarrow Cl_2 + 2e^-$ ([1]).							
		At cathode $2H_2O + 2e^- \rightarrow 2OH^- + H_2$ ([1]). (accept $2H^+ + 2e \rightarrow H_2$)						
	(Mir	The mercury from the Hg cell can escape into the environment causing mercury poisoning (Minamata disease) ([1]).						
	•	Any two from: PVC, bleaching paper, disinfecting swimming pools, formation of inorganic chemicals, solvent, refrigerants ([2]).						
		The UV light breaks the C—Cl bond (homolytically) to give Cl• radicals ([1]).						
	UI∙	Cl• radicals react with ozone to give oxygen ([1]). [10						

OPTION F – FUELS AND ENERGY

(d) Biomass is produced (continuously) from waste products or quick growing crops, (therefore there is no need to use foreign exchange to import oil or other fuels). [1] OR Because fossil fuels are running out. [1] F2. (a) Splitting of an (unstable) nucleus. [1] (b) There is a small mass loss which is converted into a large amount of energy. [1] (c) Image: state in the image: state in t	F1.	(a)	Methane $/ CH_4$.									
• particulates (soot); • C_xH_y (accept HC or hydrocarbons); • CO (do not accept SO _x or NO _x). [2] (d) Biomass is produced (continuously) from waste products or quick growing crops, (therefore there is no need to use foreign exchange to import oil or other fuels). [1] OR Because fossil fuels are running out. [1] (b) There is a small mass loss which is converted into a large amount of energy. [1] (c) $X = n + b + 1 + (1 + 1) + (1 $		(b)	Carbon monoxide OR hydrogen. (accept correct formulas)									
(therefore there is no need to use foreign exchange to import oil or other fuels). [1] OR Because fossil fuels are running out. [1] F2. (a) Splitting of an (unstable) nucleus. [1] (b) There is a small mass loss which is converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. [1] (b) Image: Converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. [1] (c) Image: Converted into a large amount of energy. <th></th> <th></th> <th>[2]</th>			[2]									
F2. (a) Splitting of an (unstable) nucleus. [1] (b) There is a small mass loss which is converted into a large amount of energy. [1] (c) $\boxed{\frac{X n b 1}{Y Pu c 0}}$		(d)										
(b) There is a small mass loss which is converted into a large amount of energy. [1] (c) $\frac{X n b 1}{Y Pu c 0}$		OR										
(c) $\begin{array}{c c} X & n & b & 1 \\ \hline Y & Pu & c & 0 \\ \hline \end{array}$	F2. (a) Splitting of an (unstable) nucleus.							[1]				
X n b 1 Y Pu c 0		(b)	There is a small mass loss which is converted into a large amount of energy.									
Y Pu c 0		(c)										
			Х	n	b	1						
			Y	Pu	c	0						
			Ζ	e	d	0						
				e	u	V						

[4](Award [½] for each, round down.)(d)To prevent radioactivity from escaping.
Closed loop primary coolant: water, heavy water, sodium, CO_2 .(e) $\frac{1.2 \times 10^{-12}}{1.5 \times 10^{-13}} = 8 = 2^n$ therefore number of half-lives (n) is 3.[1]

e

-1

92

а

Age of object is $3 \times 5730 = 1.7 \times 10^4$ years (17190 years). [1]

Disadvantages: Obtaining pure silicon is an expensive process. Conversion of sunlight to electricity is not very efficient.	[1] [1]
Silicon can be doped with a Group 3 element (Ga or In).	[1]
This introduces holes which can be regarded as positive carriers of electricity (p-type doping).	[1]
Silicon can also be doped with a Group 5 element (As).	[1]
This introduces an extra electron which increases the electrical conductivity (n-type doping).	[1]
Both processes increase the conductivity of the silicon because less energy is needed to get extra electrons or holes moving (<i>i.e.</i> reduces the	
ionisation energy).	[1]

[10]

OPTION G – MODERN ANALYTICAL CHEMISTRY

G1.	(a)	Monochromatic means all having the same frequency/wavelength. The angle of diffraction depends on the frequency/wavelength. So that, if the X-rays did not all have the same wavelength, there would not be a single					
			action angle.	[1]			
	(b)	$n\lambda =$	$2d\sin\theta; d = \frac{n\lambda}{2\sin\theta}; d = \frac{1 \times 154 \times 10^{-12}}{2 \times \sin 32.3}.$	[1]			
		$d = 144 \times 10^{-12} = 144 \text{ pm}$					
	(c)	(i)	One at centre plus $8 \times \frac{1}{8}$ on corners means two chromium atoms.	[1]			
		(ii)	Volume of one mole of Cr is $6.02 \times 10^{23} \times \frac{1}{2} \times (288 \times 10^{-12})^3$				
			$= 7.19 \times 10^{-6} \text{ m}^3$	[1]			
			Density is $\frac{m}{V} = \frac{52.00}{7.19 \times 10^{-6} \text{ g m}^{-3}} = 7.23 \times 10^{6} \text{ g m}^{-3} (= 7.23 \text{ g cm}^{-3})$	[1]			
			(N.B. If 150 pm taken as separation of layers density is 6.40 g cm ^{-3} .)				
	(d)	(i)	Solid.	[1]			
		(ii)	Hydrogen; their electron density is too low.	[2]			
		(iii)	The electron density is quite high indicating covalent bonding.	[1]			

- (e) (i) The energy of the quantum of radiation, given by E = hf [1] must be equal to the difference in the energy between the two states of the particle. [1]
 - (ii) Changes in rotation involve smaller changes of energy than either electronic or vibrational changes. [1]

G2. Steady gas flow ([1]) through a packed column ([1]). The sample is injected into the gas flow ([1]) and different compounds reach the detector at different times ([1]). The detector can operate on changes in thermal conductivity of the gas, or changes in the electrical conductivity of the flame as it is burnt ([1]). Pesticide *B* is more strongly absorbed by the packing ([1]) so that it elutes after pesticide *A* ([1]). If the temperature were higher all the pesticides would elute more rapidly ([1]). GLC is generally more sentitive, and hence smaller samples are required than HPLC ([1]), but it can only be used with substances which are volatile ([1]).

[1]

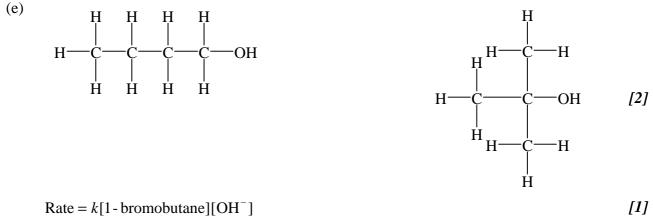
OPTION H – FURTHER ORGANIC CHEMISTRY

- H1. (a) The melting point is determined by the strength of the intermolecular forces of attraction. [1]
 Both isomers exhibit intermolecular hydrogen bonding but this is weaker in the 1,2-isomer as intramolecular hydrogen bonding also occurs. [1]
 - (b) In the 1,2-isomer the two alkanoic acid groups are aligned so that a molecule of water can be eliminated. In the 1,4-isomer the two acid groups are far apart from each other.

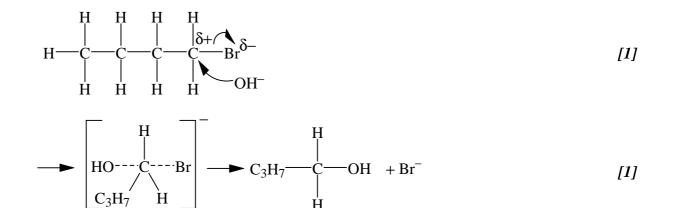
H2.	(a)	Electrophilic substitution.			
	(b)	It protonates the nitric acid (or it helps to form NO_2^+).			
		(Accept a suitable equation <i>e.g.</i> $HNO_3 + H_2SO_4 \rightarrow H_2NO_3^+$ OR $NO_2^+ + H_2O + HSO_4^-$)			
	(c) The nitro- group is electron withdrawing.This decreases the electron density over the benzene ring making it less re				
		towards electrophiles.			
	(d)	(i)	A resonance hybrid lies inbetween the various Lewis structure representations.	[1]	
		(ii)	The electron withdrawing nitro- group will tend to destabilise the carbocation when the positive charge is on the carbon atom containing the nitro- group. This only occurs in the resonance hybrid forms of the 2- and the 4- intermediates and so the 3- substitution will occur as the intermediate is more likely to be formed.	[1] [1] [1]	
			Tormed.	[1]	

(e) The 1,3-dinitrobenzene made by the student was not pure. [1]

[1]


[1]

[1]


[1]

H3. (a) Silver bromide (AgBr) (accept equation $Ag^+ + Br^- \rightarrow AgBr$) [1]

- (b) The bromine is covalently bonded to the carbon atom so no bromide ions are present.
- (c) Substitution occurs which releases the bromide ions.
- (d) The non-bonded pair of electrons on the bromine can delocalise with the electrons in the benzene ring (making the C—Br bond stronger so less able to break). [1]
- **OR** The delocalised electrons from the benzene ring repel nucleophiles (and prevent them from reacting with the carbon atom bonded to the bromine).

Rate = k[2 - bromo - 2 - methylpropane]

$$(CH_3)_3C \longrightarrow Br \longrightarrow (CH_3)_3C^+ + Br^-$$
[1]

 $(CH_3)_3C^+ + OH^- \rightarrow (CH_3)_3COH$ [1]

1-bromobutane, unlike 2-bromo-2-methylpropane, cannot dissociate into ions as a primary carbocation is less stable than a tertiary carbocation **OR** the transition state containing five groups around the central carbon ion cannot be formed in the case of 2-bromo-2-methylpropane due to steric hindrance.

– 15 –