MARKSCHEME

November 2000

CHEMISTRY

Higher Level

Paper 2

SECTION A

1. (a) (i) A, C, D
(Must have all three for mark.)
(ii) A
(iii) van der Waal's forces (or dispersion or London forces or induced dipole induced dipole (but not dipole-dipole) interaction).
(iv) Nitrogen or oxygen or fluorine.
(v) F because it has the highest melting/boiling point.
(Need explanation for mark.)
(vi) E: a metal;

F: a metalloid (accept semi-conductor).
(b) (i)

Exists as a dimer in non-polar solvents (because of strong inter-molecular H -bonding) but exists as a monomer in aqueous solution (because of H -bonding with water).
(No mark without mention of non-polar solvent.)
(ii)

(Award [1] for diagram showing intra-molecular H-bonding)
The cis-isomer experiences intra-molecular H-bonding that reduces the chances of H -bonding between molecules;
OR the trans-isomer experiences (more) inter-molecular H -bonding that increases the chances of H -bonding between molecules.

Question 1 (b) continued
(iii)

Only ethanol experiences H -bonding because H is bonded to O , whereas in the ether, all H atoms are bonded to C
OR ether does not exhibit H -bonding as H is not bonded to O .
2. (a) (i)

	3 c						
$\mathrm{Fe}^{0}:$	4 s						
	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow	
$\mathrm{Fe}^{2+}:$		$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow	
$\mathrm{Fe}^{3+}:$		\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	

(Award [1] for each correct electronic configuration.)
(ii) +2
(iii) FeO_{4}^{2-}, $\mathbf{O R ~} \mathrm{FeO}_{3}$ OR $\mathrm{Fe}_{2} \mathrm{O}_{7}^{2-}$ OR $\mathrm{Fe}_{2} \mathrm{O}_{6}$
(b) (i) A ligand is an anion or a molecule (having lone electron pairs) that can form a (co-ordinate) bond to a (central) atom or cation.
(ii) A Lewis acid-base reaction

The ligand is a Lewis base (or an electron pair donor) and the metal ion a Lewis acid (or an electron pair acceptor).
OR because $\mathrm{H}_{2} \mathrm{O}$ donates an e^{-}pair to form a covalent bond with Fe^{2+}
(Need both comments for mark.)
(iii) Because the d orbitals are split into two sets of different energy levels and electron transitions between them are responsible for their colours.
(Need both statements for mark.)
Different ligands split to different extent giving different colours.
OR They contain different ligands, so the energy difference between the split 3d orbitals is not the same in each case.
The e^{-}transitions between the two absorb different amounts of energy, corresponding to different wavelength of light in the visible spectrum.
3. (a) (i) $t \frac{1}{2}=\frac{0.693}{k}$;

$$
\begin{aligned}
k & =\frac{0.693}{1.62 \times 10^{4} \mathrm{~s}} \\
& =4.28 \times 10^{-5} \mathrm{~s}^{-1}
\end{aligned}
$$

(No mark without units.)
(ii) $\quad \ln k=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}+\ln \mathrm{A}$

Therefore $\mathrm{E}_{\mathrm{a}}=(\ln \mathrm{A}-\ln k) \mathrm{RT}$

$$
=[3.219-(-10.059)] \times 8.314 \mathrm{~J} \mathrm{~K}^{-1} \times 1107 \mathrm{~K}
$$

(Award [1] for correct temperature.)

$$
=122 \mathrm{~kJ}
$$

(No mark without unit. If T taken as $834^{\circ} \mathrm{C}$, then $\mathrm{E}_{\mathrm{a}}=92.1 \mathrm{~kJ}$)
(iii) Slow step: $\mathrm{N}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}_{4} \mathrm{O}_{2}$ OR $\quad \mathrm{N}_{2} \mathrm{O}+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{N}_{2}$

Fast step: $\quad \mathrm{N}_{4} \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2}+\mathrm{O}_{2} \quad$ OR $\quad \mathrm{N}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}$
(b)

(Award [1] for exothermic reaction and [1] for E_{a} and $\mathrm{E}_{\mathrm{a}(\mathrm{cat})}$. Allow [1] for showing E_{a} lower for catalysed reaction.)
4. (a) (i) There will be no change in pressure.
(ii) The pressure will decrease.
(b) (i) The temperature will increase.
(ii) The methanol concentration will increase.
(c) (i) $K_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{2}} \mathrm{~mol}^{-2} \mathrm{dm}^{6}$
(Need units to score mark.)
(ii) $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

$$
\Delta H=-91 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\begin{array}{lll}\mathrm{n}: & 1.00 & 2.00\end{array}$
neq: $\quad 1.00-0.85 \quad 2.00-1.70 \quad 0.85$
[]eq: $\frac{0.15}{0.45} \quad \frac{0.30}{0.45} \quad \frac{0.85}{0.45}$

$$
=0.333 \quad=0.667 \quad=1.889
$$

$$
K_{\mathrm{c}} \quad=\frac{1.889}{0.333 \times 0.667^{2}} \quad=12.8\left(\mathrm{~mol}^{-2} \mathrm{dm}^{6}\right)
$$

(iii) Side reactions OR leaks in the system OR not operating under equilibrium
conditions OR operating at a higher temperature OR the product might be
collected before equilibrium is reached.
(iv) No effect on $K_{\text {c }}$ (it just speeds up the reaction). [1]

SECTION B

5. (a) (i) Electrons go into same main shell/energy level.

Increase in nuclear charge OR number of protons in the nucleus across period (pulls valence electrons closer together).
(ii) Mg is $3 \mathrm{~s}^{2}, \mathrm{Al}$ is $3 \mathrm{~s}^{2} 3 \mathrm{p}^{1}$.

The $3 \mathrm{p}^{1}$ electron is in a higher energy level and easier to remove.
(iii) P is $3 \mathrm{p}^{3}$ where the electrons are arranged singly; S is $3 \mathrm{p}^{4}$

Repulsion of the paired electron in S causes lower I.E.
(b) $\mathrm{NaCl}, \mathrm{MgCl}_{2}, \mathrm{AlCl}_{3}\left(\mathrm{Al}_{2} \mathrm{Cl}_{6}\right), \mathrm{SiCl}_{4}, \mathrm{PCl}_{5}$ or PCl_{3}.
(Award [2] for all correct and [1] for one error.)
Argon is a noble (unreactive) gas with full outer shell of electrons.
SiCl_{4} : covalent bonding between atoms (within the molecules).
Weak van der Waal's or London or dispersion forces between molecules.
(c) Oxides of Na and Mg : basic;
oxide of Al: amphoteric;
oxide of Si, P and S : acidic.
(Award no marks for any one missing; formulas of oxides not asked for.)

$$
\begin{align*}
& \mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2} \\
& \mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}\left(\text { accept }_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}\right)
\end{align*}
$$

(Accept appropriate acid-base reactions; equations must be balanced to score marks.)
Slightly acidic from dissolved CO_{2} in water forming carbonic acid OR $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ (weak acid) (No mark if SO_{x} or NO_{x} mentioned)
(d) (i) $\mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{NaAlO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (accept $2 \mathrm{Na}^{+} \mathrm{AlO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}$)
OR $\quad \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAl}(\mathrm{OH})_{4}$ (accept $2 \mathrm{Na}^{+} \mathrm{Al}(\mathrm{OH})_{4}^{-}$)
(Accept net ionic equations; equations must be balanced for marks.)
(ii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \rightleftharpoons\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{3+}+\mathrm{H}^{+}$

OR $\mathrm{FeCl}_{3}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}$
(e) Cl_{2} reacts with (oxidises) Br^{-}and I^{-}to the corresponding halogens [1]
as it is a better oxidising agent than Br_{2} and I_{2}. (Accept balanced equations) [1]
Br_{2} reacts with I^{-}but not Cl^{-}(to form I_{2}) (accept balanced equation) [1]
as it is a better oxidising agent than I_{2}. [1]
I_{2} will not react with Cl^{-}or Br^{-}(as it is the weakest oxidising agent of the three). [1]
6. (a) (i) $\Delta H_{f}^{\dot{O}}=$ standard enthalpy change of formation of a substance.

It is the heat change (absorbed or released under constant pressure) when a mole of a compound is formed from its elements in their standard states.
$S^{\ddot{\partial}}=$ standard entropy.
It is related to (is a measure of) the disorder or randomness of particles.
OR It is the quantity of energy owned by a mole of an element or a compound in its standard state at 298 K .

À: related to standard conditions or $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ and one atmosphere pressure. (Need both for mark.)
(ii) Δ : not included because S has absolute values, $\mathbf{O R} S$ values can be measured.
(iii) $\Delta H_{f}^{\text {Ö }}(\mathrm{Cu})=0$
(b)
(i) $\Delta H_{f}^{\ddot{O}}$ reaction $=\sum \Delta H_{f}^{\ddot{\partial}}$ products $-\sum \Delta H_{f}^{\ddot{\partial}}$ reactants
(Can be implicit in the calculation)
$\Delta H_{f}^{\text {ö }}$ reaction $=\{[4 \times(-242)+(-1084)]-[-2278]\} \mathrm{kJ} \mathrm{mol}^{-1}$

$$
\begin{equation*}
=+226 \mathrm{~kJ} \mathrm{~mol}^{-1}(\text { accept } k J) \tag{1}
\end{equation*}
$$

(Must include unit to score mark.)
An endothermic process $\mathbf{O R}$ reaction needs energy/heat
(ii) $\Delta S^{\ddot{\partial}}$ reaction $=\sum_{\#} \Delta S^{\ddot{\partial}}$ products $-\sum \Delta S^{\circ}$ reactants

$$
\begin{equation*}
=\|[4 \times(189)+(150)]-[305]]^{\mathrm{J} ~ K}{ }^{-1} \tag{1}
\end{equation*}
$$

$\Delta S^{\ddot{\partial}}$ reaction $=601 \mathrm{~J} \mathrm{~K}^{-1} \mathbf{O R} 0.601 \mathrm{~kJ} \mathrm{~K}^{-1} \quad$ (correct value) [1]
(correct units) [1]
$(+)$ sign/value, thus products are more disordered than reactants.
(iii) Gibbs free energy, $\mathbf{O R} G(\operatorname{accept} \Delta G)$. [1]

Units: J or kJ OR $\mathrm{kJ} \mathrm{mol}^{-1}$.

Question 6 continued

(c)

$$
\text { (i) } \quad \begin{aligned}
\Delta G^{\ddot{\partial}} & =\Delta H^{\ddot{\partial}}-T \Delta S^{\ddot{\partial}} \\
& =226 \mathrm{~kJ}-298 \mathrm{~K}\left(0.601 \mathrm{~kJ} \mathrm{~K}^{-1}\right)
\end{aligned}
$$

(Award [1] for temperature and [1] for $\Delta H^{\circ ̈}$ and ΔS° values.)

$$
=+47 \mathrm{~kJ}\left(\text { accept } 47 \mathrm{~kJ} \mathrm{~mol}^{-1} ; \text { no marks without units) }[1]\right.
$$

$\Delta G^{\ddot{\partial}}>0$, therefore reverse action is spontaneous. [1]
$\mathbf{O R}$ forward reaction is non-spontaneous thus $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is more stable at $25^{\circ} \mathrm{C}$.
(No double jeopardy if wrong answers are used from (b) above.)
(ii) $\Delta G^{\text {ö }}=\Delta H^{\text {ö }}-T \Delta S^{\text {ö }}$

Therefore $0=226 \mathrm{~kJ}-T \mathrm{~K}\left(0.601 \mathrm{~kJ} \mathrm{~K}^{-1}\right)$
Therefore $T=\frac{226}{0.601}=376 \mathrm{~K}$.
Thus forward reaction is spontaneous above $103{ }^{\circ} \mathrm{C}$
7. (a) (i) Weak acid
for a strong $0.100 \mathrm{~mol} \mathrm{dm}^{-3}, \mathrm{pH}$ would be 1.0
(thus acid is partially dissociated and weak).
pH of final solution closer to 13 means $\mathrm{pOH}=1$ OR there is a substantial [1] vertical portion of the pH curve near the end point thus a strong base.
(ii) $\quad \mathrm{V}_{\mathrm{b}}=0.100 \mathrm{moldm}^{-3} \times \frac{25.0}{22.2}$.

$$
\left.=0.113 \mathrm{~mol} \mathrm{dm}^{-3} \text { (accept } M \text { as unit }\right) .
$$

(iii) $\mathrm{HIn} \rightleftharpoons \mathrm{H}^{+}+\mathrm{In}^{-}$(generally weak acids)

In acid solution, $\left[\mathrm{H}^{+}\right]$will shift equilibrium to the left, indicator is predominantly present as HIn which is one colour
and in basic solution, H^{+}ions are removed by OH^{-}, shifting equilibrium to the right; In^{-}predominantly present which is another colour.
(iv) $K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]}$

At end point intensity of HIn and In^{-}is about the same (where colour change takes place), OR [HIn] $=\left[\mathrm{In}^{-}\right]$
therefore $K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right]$, and $\mathrm{p} K_{\mathrm{a}}=\mathrm{pH}$.
(v) At equivalence point $\mathrm{pH} \simeq 8 /$ between 8 and 9 , so use indicator of $\mathrm{p} K_{\mathrm{a}} \approx 8$. (Accept 9.)

Question 7 continued

(b) Na^{+}ions are neutral cations from a strong base.
ethanoate ions are basic (from a weak acid)
OR $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \mathrm{OR}$ hydrolyses to produce weak acid + strong base, therefore basic.
Since ammonium ion is a weak acid $\mathbf{O R} \mathrm{NH}_{4}^{+} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}^{+}$
then the presence of a weak acid and a weak base produces (an approximately) neutral solution.

Alternate answer:
The ions in sodium ethanoate solution are

- $\mathrm{CH}_{3} \mathrm{COO}^{-}$and Na^{+},
- H^{+}and OH^{-}.
Na^{+}and OH^{-}do not combine because NaOH is a strong base. $\mathrm{CH}_{3} \mathrm{COO}^{-}$and H^{+}do combine because $\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid. The solution contains more OH^{-}than H^{+}ions, so is alkaline. The ions in ammonium ethanoate solution are
- $\mathrm{CH}_{3} \mathrm{COO}^{-}$and NH_{4}^{+},
- H^{+}and OH^{-}.
$\mathrm{NH}_{4} \mathrm{OH}$ is a weak base, so the NH_{4}^{+}and OH^{-}ions combine. As this happens to about the same extent as the combination of $\mathrm{CH}_{3} \mathrm{COO}^{-}$and H^{+}, the numbers of H^{+}and OH^{-}ions are about equal, so the solution is approximately neutral.
(c) SO_{4}^{2-} : neutral anions (from a strong acid).
Al^{3+} : weakly acidic $\mathbf{O R ~} \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+} \rightleftharpoons\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}^{+}$
The H^{+}reacts with the basic solution, reducing its pH
$\mathrm{OR}\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+\mathrm{OH}^{-} \rightarrow\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]^{2+}+\mathrm{H}_{2} \mathrm{O}$
(d) (i) $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

$$
\text { (accept } \left.\mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}\right)
$$

(ii) $n=c V=0.4040 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.02851 \mathrm{dm}^{3}=0.01152 \mathrm{~mol}$
$\mathrm{mol} \mathrm{NH}_{3}=2 \mathrm{~mol}$ acid $=0.02304 \mathrm{~mol}$
$M_{\mathrm{r}}=17.04 ;$ mass $=17.04 \mathrm{~g} \mathrm{~mol}^{-1} \times 0.02304=0.3926 \mathrm{~g}$
(if $M_{\mathrm{r}}=17.0$, accept 0.392 g).
$\%=\frac{0.3919}{2.447} \times 100=16.04 \%$
(Accept answers within + or - one s.f.; maximum penalty of [1] in question for serious errors in use of significant figures.)
8. (a) $\mathrm{C}=\mathrm{C}$: add bromine (or bromine water)
its colour is discharged OR changes from orange to clear.
COOH : add sodium carbonate solution OR Na OR acid/base indicator.
It would effervesce/gas bubbles produced.
(b) (i) $\quad \mathrm{C}=\mathrm{C} \quad$ at $1610-1680 \mathrm{~cm}^{-1}$
$\mathrm{C}=\mathrm{O} \quad$ at $1680-1750 \mathrm{~cm}^{-1}$
C-H at $2840-3095 \mathrm{~cm}^{-1}$
O—H at $2500-3300 \mathrm{~cm}^{-1}$
(Award [2] for three correct and [1] for any two.)
(ii) CH_{3} at 0.9 ppm
$\mathrm{C}=\mathrm{C}-\mathrm{H}$ at $4.9-5.9 \mathrm{ppm}$
COOH at 11.5 ppm
(Award [2] for all three and [1] for any two.)
Ratio of areas of peaks: 6:1:1
(c) (i) NMR [1]
because B would give 5 peaks [1]
whereas C would give only 4 peaks
(Accept: because the chemical environments of the H atoms are different and the number of peaks would be different.)
(ii) Test based on fact that secondary alkanols (alcohols) area easily oxidised, whereas tertiary alkanols are not
Warm (or reflux) with acidified dichromate or manganate(VII)
With B orange dichromate would change to green (OR purple manganate(VII) would turn (almost) clear)
With C it would remain orange (or purple)
(d) (i) Optical activity is the ability to rotate the plane of polarised light (accept rotate plane polarised light).

It has an asymmetric carbon atom OR a carbon bonded to four different groups OR the molecule is asymmetric OR chiral centre.
(ii) Compound B can exhibit optical activity.

(Award only [1] if relationship is not clear.)
One enantiomer rotates plane of polarised light clockwise (or +), the other anticlockwise (or -); accept dexrorotatory and levorotatory.

Question 8 continued

(e) For OH to be acidic, the $\mathrm{O}-\mathrm{H}$ bond has to break $/ \mathrm{H}^{+}$or protons form

In COOH the $\mathrm{O}-\mathrm{H}$ bond breaks $/ \mathrm{H}^{+}$forms because the second O on carbon attracts e^{-} density from the $\mathrm{O}-\mathrm{H}$ bond.
Delocalisation stabilises the COO^{-}anion. [1]

