

MARKSCHEME

November 2000

CHEMISTRY

Higher Level

Paper 2

SECTION A

1.	(a)	(i)	A, C, D	[1]
			(Must have all three for mark.)	
		(ii)	A	[1]
		(iii)	van der Waal's forces (or dispersion or London forces or induced dipole induced dipole (but not dipole–dipole) interaction).	[1]
		(iv)	Nitrogen or oxygen or fluorine.	[1]
		(v)	F because it has the highest melting/boiling point.	[1]
			(Need explanation for mark.)	
		(vi)	E: a metal; F: a metalloid (accept semi-conductor).	[1] [1]
	(b)	(i)	$CH_{3} - C + O - H - O - C + O - O - C + O - O - C + O - O - C + O - O - O - O - O - O - O - O - O - O$	[1]

Exists as a dimer in non-polar solvents (because of strong inter-molecular H-bonding) but exists as a monomer in aqueous solution (because of H-bonding with water). [1]

(No mark without mention of non-polar solvent.)

(ii)

(Award [1] for diagram showing intra-molecular H-bonding)

The cis-isomer experiences **intra**-molecular H-bonding that reduces the chances of H-bonding between molecules;

OR the trans-isomer experiences (more) **inter**-molecular H-bonding that increases the chances of H-bonding between molecules.

[1]

[1]

Question 1 (b) continued

Only ethanol experiences H-bonding because H is bonded to O, whereas in the ether, all H atoms are bonded to C

OR ether does not exhibit H-bonding as H is not bonded to O.

2. (a) (i)

(b)

	4s			3d		
Fe ⁰ :	$\uparrow \downarrow$	$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow
Fe ²⁺ :		$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow
Fe ³⁺ :		\uparrow	\uparrow	\uparrow	\uparrow	\uparrow

	(Award [1] for each correct electronic configuration.)	[3]
(ii)	+2	[1]
(iii)	$\operatorname{FeO}_4^{2-}$, OR FeO_3 OR $\operatorname{Fe}_2\operatorname{O}_7^{2-}$ OR $\operatorname{Fe}_2\operatorname{O}_6$	[1]
(i)	A ligand is an anion or a molecule (having lone electron pairs) that can form a (co-ordinate) bond to a (central) atom or cation.	[1]
(ii)	A Lewis acid–base reaction The ligand is a Lewis base (on an electron pair dance) and the metal ion a Lewis	[1]
	acid (or an electron pair acceptor).	[1]
OR	because H_2O donates an e pair to form a covalent bond with Fe ²⁺	
	(Need both comments for mark.)	
(iii)	Because the d orbitals are split into two sets of different energy levels and electron transitions between them are responsible for their colours.	[1]
	(Need both statements for mark.)	
	Different ligands split to different extent giving different colours.	[1]

OR They contain different ligands, so the energy difference between the split 3d orbitals is not the same in each case.
The e⁻ transitions between the two absorb different amounts of energy, corresponding to different wavelength of light in the visible spectrum.

[2]

3. (a) (i)
$$t_{\frac{1}{2}} = \frac{0.693}{k};$$

 $k = \frac{0.693}{1.62 \times 10^4 \text{ s}}$
 $= 4.28 \times 10^{-5} \text{ s}^{-1}$
[1]

(No mark without units.)

(ii)
$$\ln k = \frac{-E_a}{RT} + \ln A$$

Therefore $E_a = (\ln A - \ln k) RT$

$$= [3.219 - (-10.059)] \times 8.314 \text{ J K}^{-1} \times 1107 \text{ K}$$
 [1]

(Award [1] for correct temperature.)

(No mark without unit. If T taken as 834 $^\circ C$, then E_a = 92.1 kJ)

(iii) Slow step: $N_2O + N_2O \rightarrow N_4O_2$ **OR** $N_2O + N_2O \rightarrow N_2O_2 + N_2$ [1]

Fast step:
$$N_4O_2 \rightarrow 2N_2 + O_2$$
 OR $N_2O_2 \rightarrow N_2 + O_2$ [1]

(b)

(Award [1] for exothermic reaction and [1] for E_a and $E_{a(cat)}$. Allow [1] for showing E_a lower for catalysed reaction.)

4.	(a)	(i)	There will be no change in pressure.	[1]
		(ii)	The pressure will decrease.	[1]
	(b)	(i)	The temperature will increase.	[1]
		(ii)	The methanol concentration will increase.	[1]

(c) (i)
$$K_{\rm c} = \frac{[{\rm CH}_3 {\rm OH}]}{[{\rm CO}][{\rm H}_2]^2} \, {\rm mol}^{-2} \, {\rm dm}^6$$
 [1]

(Need units to score mark.)

(ii)	CO(g) + 2	$H_2(g) \Rightarrow CH_3OH(g)$	g) $\Delta H = -$	$\Delta H = -91 \text{ kJ mol}^{-1}$		
	n:	1.00	2.00	_		
	neq:	1.00-0.85	2.00-1.70	0.85	[1]	
	[]eq:	$\frac{0.15}{0.45}$	$\frac{0.30}{0.45}$	$\frac{0.85}{0.45}$	[1]	
		= 0.333	= 0.667	= 1.889		
		1 9 9 0				

$$K_{\rm c} = \frac{1.889}{0.333 \times 0.667^2} = 12.8 \,({\rm mol}^{-2} \,{\rm dm}^6)$$
 [1]

- (iii) Side reactions OR leaks in the system OR not operating under equilibrium conditions OR operating at a higher temperature OR the product might be collected before equilibrium is reached. [1]
- (iv) No effect on K_c (it just speeds up the reaction). [1]

– 11 –

SECTION B

5.	(a)	(i)	Electrons go into same main shell/energy level. Increase in nuclear charge OR number of protons in the nucleus across period (pulls valence electrons closer together).	[1] [1]
		(ii)	Mg is $3s^2$, Al is $3s^2 3p^1$.	[1]
		. ,	The $3p^1$ electron is in a higher energy level and easier to remove.	[1]
		(iii)	P is $3p^3$ where the electrons are arranged singly; S is $3p^4$ Repulsion of the paired electron in S causes lower I.E.	[1] [1]
	(b)	NaC	l, $MgCl_2$, $AlCl_3$ (Al_2Cl_6), $SiCl_4$, PCl_5 or PCl_3 .	[2]
		(Awc	ard [2] for all correct and [1] for one error.)	
		Argo	on is a noble (unreactive) gas with full outer shell of electrons.	[1]
		SiCl Wea	⁴ : covalent bonding between atoms (within the molecules). k van der Waal's or London or dispersion forces between molecules.	[1] [1]
	(c)	Oxid oxide oxide	les of Na and Mg: basic; e of Al: amphoteric; e of Si, P and S: acidic.	[1] [1] [1]
		(Awc	ard no marks for any one missing; formulas of oxides not asked for.)	
		MgC P_4O_1	$D + H_2O \rightarrow Mg(OH)_2$ $_0 + 6H_2O \rightarrow 4H_3PO_4 \text{ (accept } P_2O_5 + 3H_2O \rightarrow 2H_3PO_4\text{)}$	[1] [1]
		(Acc	ept appropriate acid-base reactions; equations must be balanced to score marks.)	
		Sligh CO_2	the the two sets of two sets	[1]
	(d)	(i)	$Al_2O_2 + 6HCl \rightarrow 2AlCl_2 + 3H_2O$	[1]
		OR	$Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$ (accept $2Na^+AlO_2^- + H_2O$) $Al_2O_3 + 2NaOH + 3H_2O_2 \rightarrow 2NaAl(OH)$ (accept $2Na^+Al(OH)^-$)	[1]
		Űĸ	(Accept net ionic equations; equations must be balanced for marks.)	
		(ii) OR	$\begin{bmatrix} \operatorname{Fe}(\operatorname{H}_{2}\operatorname{O})_{6} \end{bmatrix}^{3+} \rightleftharpoons \begin{bmatrix} \operatorname{Fe}(\operatorname{H}_{2}\operatorname{O})_{5}\operatorname{OH} \end{bmatrix}^{3+} + \operatorname{H}^{+} \\ \operatorname{Fe}\operatorname{Cl}_{3} + 6\operatorname{H}_{2}\operatorname{O} \rightarrow \begin{bmatrix} \operatorname{Fe}(\operatorname{H}_{2}\operatorname{O})_{6} \end{bmatrix}^{3+} + 3\operatorname{Cl}^{-} \end{bmatrix}$	[1]
	(e)	Cl ₂ r	reacts with (oxidises) Br^- and I^- to the corresponding halogens	[1]
		as it i	is a better oxidising agent than Br_2 and I_2 . (Accept balanced equations) reacts with I^- but not Cl^- (to form I_2) (accept balanced equation)	[1] [1]
		as it	is a better oxidising agent than I_2 .	[1]
		I_2 wi	ill not react with Cl^- or Br^- (as it is the weakest oxidising agent of the three).	[1]

6.	(a)	(i)	ΔH_f° = standard enthalpy change of formation of a substance. It is the heat change (absorbed or released under constant pressure) when a mole	[1]
			of a compound is formed from its elements in their standard states.		[1]
		OR	S° = standard entropy. It is related to (is a measure of) the disorder or randomness of particle It is the quantity of energy owned by a mole of an element or a constandard state at 298 K.	cles. ompound in its	[1] [1]
			A: related to standard conditions or 298 K (25 $^{\circ}$ C) and one atmosph (<i>Need both for mark.</i>)	nere pressure.	[1]
		(ii)	Δ : not included because <i>S</i> has absolute values, OR <i>S</i> values can be	measured.	[1]
		(iii)	$\Delta H_f^{O}(Cu) = 0$		[1]
	(b)	(i)	$\Delta H_f^{\circ} \text{ reaction} = \sum \Delta H_f^{\circ} \text{ products} - \sum \Delta H_f^{\circ} \text{ reactants}$		[1]
			(Can be implicit in the calculation)		
			$\Delta H_f^{\circ} \text{ reaction} = \{ [4 \times (-242) + (-1084)] - [-2278] \} \text{ kJ mol}^{-1} $ = +226 kJ mol ⁻¹ (accept kJ)		[1] [1]
			(Must include unit to score mark.)		
			An endothermic process OR reaction needs energy/heat		[1]
		(ii)	$\Delta S^{\circ} reaction = \sum \Delta S^{\circ} products - \sum \Delta S^{\circ} reactants$ $= \left[\left[4 \times (189) + (150) \right] - \left[305 \right] \right] J K^{-1}$		[1]
			$\Delta S^{\circ} reaction = 601 J K^{-1} OR 0.601 kJ K^{-1}$	(correct value) (correct units)	[1] [1]
			(+) sign/value, thus products are more disordered than reactants.		[1]
		(iii)	Gibbs free energy, OR <i>G</i> (accept ΔG). Units: J or kJ OR kJ mol ⁻¹ .		[1] [1]

continued...

Question 6 continued

(c) (i)
$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

= 226 kJ - 298 K (0.601 kJ K⁻¹)

(Award [1] for temperature and [1] for ΔH° and ΔS° values.) [2]

 $\Delta G^{\circ} > 0, \text{ therefore reverse action is spontaneous.}$ **OR** forward reaction is non-spontaneous
thus CuSO₄ · 5H₂O is more stable at 25 °C. [1]

(No double jeopardy if wrong answers are used from (b) above.)

(ii)
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

Therefore $0 = 226 \text{ kJ} - T \text{K} (0.601 \text{ kJ} \text{ K}^{-1})$ [1]

Therefore
$$T = \frac{226}{0.601} = 376 \text{ K}.$$
 [1]

Thus forward reaction is spontaneous above
$$103 \degree C$$
 [1]
(*i.e.* $CuSO_4 \cdot H_2O$ is more stable above $103 \degree C$).

7.	(a)	(i)	Weak acid	[1]
			for a strong 0.100 mol dm ^{-3} , pH would be 1.0	
			(thus acid is partially dissociated and weak).	[1]
			pH of final solution closer to 13 means $pOH = 1$ OR there is a substantial	[1]
			vertical portion of the pH curve near the end point	
			thus a strong base.	[1]

(ii)
$$V_b = 0.100 \text{ mol dm}^{-3} \times \frac{25.0}{22.2}$$
. [1]

$$= 0.113 \text{ mol dm}^{-3}$$
 (accept M as unit). [1]

(iii)
$$HIn \rightleftharpoons H^+ + In^-$$
 (generally weak acids) [1]

In acid solution, $[H^+]$ will shift equilibrium to the left, indicator is predominantly present as HIn which is one colour [1]

and in basic solution, H^+ ions are removed by OH^- , shifting equilibrium to the right; In^- predominantly present which is another colour. [1]

(iv)
$$K_{a} = \frac{[H^{+}][In^{-}]}{[HIn]}$$
 [1]

At end point intensity of HIn and In⁻ is about the same (where colour change takes place), **OR** [HIn] = [In⁻] [1] therefore $K_a = [H^+]$, and $pK_a = pH$. [1]

(v) At equivalence point $pH \approx 8$ / between 8 and 9, so use indicator of $pK_a \approx 8$. (Accept 9.) [1]

Question 7 continued

(b)	Na ⁺ ions are neutral cations from a strong base.				
	ethanoate ions are basic (from a weak acid)				
	OR $CH_3COO^- + H_2O \Rightarrow CH_3COOH + OH^-$ OR hydrolyses to produce weak acid +				
	strong base, therefore basic.	[1]			
	Since ammonium ion is a weak acid OR $NH_4^+ \rightleftharpoons NH_3 + H^+$	[1]			
	then the presence of a weak acid and a weak base produces (an approximately) neutral				
	solution.	[1]			

Alternate answer:

The ions in sodium ethanoate solution are

- CH_3COO^- and Na^+ ,
- H^+ and OH^- .

 Na^+ and OH^- do not combine because NaOH is a strong base. CH_3COO^- and H^+ do combine because CH_3COOH is a weak acid. The solution contains more OH^- than H^+ ions, so is alkaline. The ions in ammonium ethanoate solution are

- CH_3COO^- and NH_4^+ ,
- H^+ and OH^- .

 NH_4OH is a weak base, so the NH_4^+ and OH^- ions combine. As this happens to about the same extent as the combination of CH_3COO^- and H^+ , the numbers of H^+ and OH^- ions are about equal, so the solution is approximately neutral.

(c)
$$SO_4^{2^-}$$
: neutral anions (from a strong acid). [1]
 Al^{3^+} : weakly acidic **OR** $Al(H_2O)_6^{3^+} \rightleftharpoons [Al(H_2O)_5(OH)]^{2^+} + H^+$ [1]
The H⁺ reacts with the basic solution, reducing its pH [1]
OR $[Al(H_2O)_6]^{3^+} + OH^- \rightarrow [Al(H_2O)_5(OH)]^{2^+} + H_2O$

(d) (i)
$$2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$$
 [1]

(accept $NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + H_2O$)

(ii)
$$n = cV = 0.4040 \text{ mol dm}^{-3} \times 0.02851 \text{ dm}^{3} = 0.01152 \text{ mol}$$
 [1]

mol NH₃ = 2 mol acid = 0.02304 mol [1]

$$M_r = 17.04$$
; mass = 17.04 g mol⁻¹ × 0.02304 = 0.3926 g [1]
(if $M_r = 17.0$, accept 0.392 g).
 $\% = \frac{0.3919}{2.447} \times 100 = 16.04 \%$ [1]

(Accept answers within + or - one s.f.; maximum penalty of [1] in question for serious errors in use of significant figures.)

8.	(a)	C == its co COC It wo	 C: add bromine (or bromine water) olour is discharged OR changes from orange to clear. OH: add sodium carbonate solution OR Na OR acid/base indicator. ould effervesce/gas bubbles produced. 	[1] [1] [1] [1]
	(b)	(i)	C = C at 1610–1680 cm ⁻¹ $C = O$ at 1680–1750 cm ⁻¹ $C - H$ at 2840–3095 cm ⁻¹ $O - H$ at 2500–3300 cm ⁻¹ (Award [2] for three correct and [1] for any two.)	[2]
		(ii)	$\begin{array}{ll} CH_3 & \text{at } 0.9 \text{ ppm} \\ C = C - H & \text{at } 4.9 - 5.9 \text{ ppm} \\ COOH & \text{at } 11.5 \text{ ppm} \\ (Award [2] \text{ for all three and [1] for any two.}) \end{array}$	[2]
			Ratio of areas of peaks: 6:1:1	[1]
	(c)	(i)	NMR because B would give 5 peaks whereas C would give only 4 peaks (Accept: because the chemical environments of the H atoms are different and the number of peaks would be different.)	[1] [1] [1]
		(ii)	Test based on fact that secondary alkanols (alcohols) area easily oxidised, whereas tertiary alkanols are not Warm (or reflux) with acidified dichromate or manganate(VII) With B orange dichromate would change to green (OR purple manganate(VII) would turn (almost) clear) With C it would remain orange (or purple)	[1] [1] [1] [1]
	(d)	(i)	Optical activity is the ability to rotate the plane of polarised light (accept rotate plane polarised light).	[1]
			It has an asymmetric carbon atom OR a carbon bonded to four different groups OR the molecule is asymmetric OR chiral centre.	[1]
		(ii)	Compound B can exhibit optical activity.	[1]
			$\begin{array}{c} CH(CH_3)_2 \\ HOOC \\ OH \\ HO \\ COOH \end{array} \begin{array}{c} CH(CH_3)_2 \\ HO \\ HO \\ COOH \\ HO \\ COOH \\ CO$	[2]
			(Award only [1] if relationship is not clear.)	

One enantiomer rotates plane of polarised light clockwise (or +), the other anticlockwise (or –); accept dexrorotatory and levorotatory. [1]

continued...

Question 8 continued

(e) For OH to be acidic, the O—H bond has to break/ H^+ or protons form

$$(---C-O^{\ominus} + H^{+})$$
[1]

In COOH the O—H bond breaks/H⁺ forms because the second O on carbon attracts e⁻ density from the O—H bond. [1] Delocalisation stabilises the COO⁻ anion. [1]