CHEMISTRY
 HIGHER LEVEL
 PAPER 1

Tuesday 7 November 2000 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
Periodic Table

$\begin{gathered} 1 \\ \mathbf{H} \\ 1.01 \end{gathered}$				Atomic Number Atomic Mass													$\begin{gathered} 2 \\ \text { He } \\ 4.00 \end{gathered}$
$\begin{gathered} 3 \\ \mathbf{L i} \\ 6.94 \end{gathered}$	$\begin{gathered} 4 \\ \text { Be } \\ 9.01 \end{gathered}$											5 \mathbf{B} 10.81	$\begin{gathered} 6 \\ \mathbf{C} \\ 12.01 \end{gathered}$	$\begin{gathered} 7 \\ \mathbf{N} \\ 14.01 \end{gathered}$	$\begin{gathered} 8 \\ \mathbf{0} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} 10 \\ \mathbf{N e} \\ 20.18 \end{gathered}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} 13 \\ \mathbf{A l} \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} 17 \\ \mathbf{C l} \\ 35.45 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r} \\ 39.95 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathbf{C a} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S c} \\ 44.96 \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathbf{C r} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \text { Mn } \\ 54.94 \end{gathered}$	$\begin{gathered} 26 \\ \mathbf{F e} \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.71 \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u} \\ 63.55 \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.37 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \mathbf{A s} \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \mathbf{S e} \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
$\begin{gathered} 37 \\ \mathbf{R b} \\ 85.47 \end{gathered}$	$\begin{gathered} 38 \\ \mathbf{S r} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 92.91 \end{gathered}$	$\begin{gathered} 42 \\ \text { Mo } \\ 95.94 \end{gathered}$	$\begin{gathered} 43 \\ \mathbf{T c} \\ 98.91 \end{gathered}$	$\begin{gathered} 44 \\ \mathbf{R u} \\ 101.07 \end{gathered}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ 106.42 \end{gathered}$	$\begin{gathered} 47 \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} 48 \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \mathbf{S n} \\ 118.69 \end{gathered}$	$\begin{gathered} 51 \\ \mathbf{S b} \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \mathbf{T e} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{array}{\|c} 55 \\ \text { Cs } \\ 132.91 \end{array}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.34 \end{gathered}$	$\begin{gathered} 57 \dagger \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \mathbf{T a} \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	$\begin{gathered} 75 \\ \text { Re } \\ 186.21 \end{gathered}$	$\begin{gathered} 76 \\ \mathbf{O s} \\ 190.21 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.22 \end{gathered}$	$\begin{gathered} 78 \\ \mathbf{P t} \\ 195.09 \end{gathered}$	$\begin{gathered} 79 \\ \text { Au } \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathbf{H g} \\ 200.59 \end{gathered}$	$\begin{array}{\|c} 81 \\ \text { Tl } \\ 204.37 \end{array}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.19 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{gathered} 84 \\ \text { Po } \\ (210) \end{gathered}$	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \end{gathered}$
$\begin{gathered} 87 \\ \mathbf{F r} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \mathbf{R a} \\ (226) \end{gathered}$	$\begin{gathered} 89 \ddagger \\ \mathbf{A c} \\ (227) \end{gathered}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (261) \end{gathered}$	$\begin{gathered} 105 \\ \text { Db } \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ (263) \end{gathered}$	$\begin{gathered} 107 \\ \text { Bh } \\ (262) \end{gathered}$	$\begin{gathered} 108 \\ \mathbf{H s} \end{gathered}$	$\begin{aligned} & 109 \\ & \mathbf{M t} \end{aligned}$									

Ş
은
\bigcirc ๑¢
～系気过
すき
न～®

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.12	140.91	144.24	146.92	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97

1. Which compound has the highest percentage by mass of carbon?
A. $\mathrm{C}_{2} \mathrm{H}_{2}$
B. $\mathrm{C}_{2} \mathrm{H}_{4}$
C. $\mathrm{C}_{3} \mathrm{H}_{8}$
D. $\mathrm{C}_{4} \mathrm{H}_{10}$
2. A certain compound has a relative molar mass of 88. A possible empirical formula for this compound is
A. CH_{2}
B. $\mathrm{CH}_{2} \mathrm{O}$
C. $\mathrm{CH}_{3} \mathrm{O}$
D. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
3.

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

Hydrogen and chlorine react according to the equation above. What will be the result of the reaction of 2.0 moles of H_{2} and 1.5 moles of Cl_{2} ?
A. $\quad 3.5 \mathrm{~mol}$ of HCl
B. $\quad 1.5 \mathrm{~mol}$ of HCl and 0.5 mol of H_{2}
C. 2.0 mol of HCl and 0.5 mol of Cl_{2}
D. $\quad 3.0 \mathrm{~mol}$ of HCl and 0.5 mol of H_{2}
4. $25.0 \mathrm{~cm}^{3}$ of sulfuric acid solution reacts with $36.2 \mathrm{~cm}^{3}$ of $0.225 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution. The concentration of the acid is
A. $\frac{36.2 \times 0.225}{25.0}$
B. $\frac{2 \times 36.2 \times 0.225}{25.0}$
C. $\frac{36.2 \times 0.225}{2 \times 25.0}$
D. $\frac{25.0}{2 \times 36.2 \times 0.225}$
5. The electron transition between which two levels releases the most energy?
A. First to third
B. Fourth to ninth
C. Sixth to third
D. Second to first
6. A solid element, X , contains unpaired electrons in its atoms and forms an ionic chloride, XCl_{2}. Which electron configuration is possible for element X ?
A. $[\mathrm{Ne}] 3 \mathrm{~s}^{2}$
B. $[\mathrm{Ar}] 3 \mathrm{~d}^{2} 4 \mathrm{~s}^{2}$
C. $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$
D. $[\mathrm{Ne}] 3 s^{2} 3 \mathrm{p}^{4}$
7.

The mass spectrum of an element is shown above. Which statement about this element is correct?
A. The three isotopes are separated after being converted to negative ions
B. The isotope with mass 62 will be deflected more than the isotopes with masses 60 or 61
C. The most abundant isotope contains 61 neutrons
D. Its atomic mass will be between 60 and 61
8. Which pair of species is listed in increasing order of the property given?
A. Ionisation energy: O, F
B. Radius: $\mathrm{Mg}, \mathrm{Mg}^{2+}$
C. Melting point: $\mathrm{I}_{2}, \mathrm{Br}_{2}$
D. Covalent character: $\mathrm{HI}, \mathrm{HBr}$
9. Most of the oxides of non-metallic elements are
A. ionic and basic.
B. ionic and acidic.
C. covalent and basic.
D. covalent and acidic.
10. Which aqueous complex ion will not be coloured?
A. Ni^{2+}
B. Fe^{2+}
C. Sc^{3+}
D. Cr^{3+}
11. Which compound contains both sp^{2} and sp^{3} hybridised carbon atoms?
A.

C.

B.

D.

12. Which molecule has the largest bond angle?
A. $\quad \mathrm{BF}_{3}$
B. CF_{4}
C. NF_{3}
D. OF_{2}
13. In which of the compounds below are the electrons in the carbon-oxygen bonds delocalised?
I. Sodium ethoxide, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{ONa}$
II. Sodium ethanoate, $\mathrm{CH}_{3} \mathrm{COONa}$
A. I only
B. II only
C. Both I and II
D. Neither I nor II
14. Which species does not contain at least one 90° bond angle?
A. CF_{4}
B. PF_{5}
C. SF_{6}
D. SiF_{6}^{2-}
15. Which compound has the greatest vapour pressure at 298 K ?
A. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCH}_{3}$
C. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
D. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}$
16. $125 \mathrm{~cm}^{3}$ of an unknown gas has a mass of 0.725 g at $25^{\circ} \mathrm{C}$ and 0.97 atmospheres. Which expression will give the relative molar mass of the gas? $\left(\mathrm{R}=82.05 \mathrm{~cm}^{3} \mathrm{~atm} \mathrm{~K} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
A. $\frac{0.725 \times 82.05 \times 25}{0.97 \times 125}$
B. $\frac{125 \times 0.97}{0.725 \times 82.05 \times 298}$
C. $\frac{0.725 \times 82.05 \times 298}{0.97 \times 0.125}$
D. $\frac{0.725 \times 82.05 \times 298}{0.97 \times 125}$
17. For which combination of properties will a gas behave most ideally?
A. Polar molecules at a low temperature and high pressure
B. Polar molecules at a high temperature and low pressure
C. Nonpolar molecules at a low temperature and high pressure
D. Nonpolar molecules at a high temperature and low pressure
18.

$$
\begin{aligned}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H^{\ddot{\mathrm{O}}}=-393 \mathrm{~kJ} \\
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H^{\mathrm{O}}=-588 \mathrm{~kJ}
\end{aligned}
$$

According to the data above, what is the enthalpy of formation of carbon monoxide in $\mathrm{kJ} \mathrm{mol}^{-1}$?
A. -87
B. -99
C. -173
D. -220
19.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \Delta H^{\ddot{\mathrm{O}}}=-137 \mathrm{~kJ}
$$

Which statement about the information above is correct?
A. The total energy of the bonds broken in the reactants is greater than the total energy of the bonds formed in the product
B. The bonds broken and the bonds made are of the same strength
C. The total energy of the bonds broken in the reactants is less than the total energy of the bonds formed in the product
D. No conclusion can be made about the sums of the bond enthalpies in the product compared with the reactants.
20. When $50 \mathrm{~cm}^{3}$ of $1 \mathrm{moldm}^{-3} \mathrm{HCl}$ is mixed with $50 \mathrm{~cm}^{3}$ of $1 \mathrm{moldm}^{-3} \mathrm{NaOH}$, the temperature of the resulting solution increases by $6{ }^{\circ} \mathrm{C}$. What will be the temperature change when $100 \mathrm{~cm}^{3}$ of each of these solutions are mixed?
A. $\quad 3^{\circ} \mathrm{C}$
B. $6^{\circ} \mathrm{C}$
C. $\quad 12{ }^{\circ} \mathrm{C}$
D. $24^{\circ} \mathrm{C}$
21.

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

What are the signs of ΔH and ΔS for this reaction?

$\Delta H \quad \Delta S$

A. $+\quad+$
B.
C. +
D. $\quad+$
22.

The curve above is obtained for the reaction of an excess of CaCO_{3} with hydrochloric acid. How and why does the rate of reaction change with time?
Rate of reaction
Reason
A. decreases the HCl becomes more dilute
B. decreases the pieces of CaCO_{3} become smaller
C. increases the temperature increases
D. increases the CO_{2} produced acts as a catalyst
23. The rate equation for the reaction between O_{2} and NO is

$$
\text { Rate }=k\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}
$$

By what factor would the rate of this reaction increase if the concentrations of O_{2} and NO are both doubled?
A. $\frac{1}{8}$
B. 3
C. 4
D. 8
24.

Progress of reaction
Which energy value(s) will change when a catalyst is added?
A. I only
B. II only
C. II and III only
D. I, II and III
25.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Methanol is made in industry by means of the reaction above. The equilibrium expression for this reaction is
A. $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{2\left[\mathrm{H}_{2}\right][\mathrm{CO}]}$
B. $\frac{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}{\left[\mathrm{H}_{2}\right]^{2}[\mathrm{CO}]}$
C. $\frac{2\left[\mathrm{H}_{2}\right][\mathrm{CO}]}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
D. $\frac{\left[\mathrm{H}_{2}\right]^{2}[\mathrm{CO}]}{\left[\mathrm{CH}_{3} \mathrm{OH}\right]}$
26.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H=-91.8 \mathrm{~kJ}
$$

The industrial synthesis of ammonia is based on the reaction above. Which factor(s) will increase the equilibrium concentration of ammonia?
I. Increase in pressure
II. Increase in temperature
A. I only
B. II only
C. Both I and II
D. Neither I nor II
27. Which is the correct combination?

Intermolecular forces

Boiling point
 $\Delta \boldsymbol{H}_{\text {vap }}$

A. weak
low
low
B. weak
low
high
C.
strong
high low
D.
strong
low
low
28. When the pH of a solution changes from 2.0 to 4.0 , the hydrogen ion concentration
A. increases by a factor of 100 .
B. increases by a factor of 2 .
C. decreases by a factor of 2 .
D. decreases by a factor of 100 .
29. Which will be the same for separate $1 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of a strong acid and a weak acid?
I. Electrical conductivity
II. Concentration of H^{+}ions
A. I only
B. II only
C. Both I and II
D. Neither I nor II
30. What is the K_{a} of a $0.10 \mathrm{moldm}^{-3}$ solution of a weak monoprotic acid if the $\left[\mathrm{H}^{+}\right]=2.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$?
A. $\quad 2.0 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
B. $2.0 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$
C. $4.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$
D. $\quad 4.0 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$
31. A buffer solution will be formed by combining equal volumes of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of
A. hydrochloric acid and sodium hydroxide.
B. hydrochloric acid and sodium ethanoate.
C. ethanoic acid and sodium hydroxide.
D. ethanoic acid and sodium ethanoate.
32. Which is not a redox reaction?
A. $\quad 3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$
B. $\mathrm{N}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NO}_{2}$
C. $\mathrm{Cl}_{2}+2 \mathrm{NaI} \rightarrow 2 \mathrm{NaCl}+\mathrm{I}_{2}$
D. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
33. The same quantity of electricity was passed through separate molten samples of aluminium oxide and sodium chloride. How many moles of sodium will be produced if 0.2 moles of oxygen gas were formed?
A. 0.1
B. 0.2
C. 0.4
D. 0.8
34.

$$
\begin{aligned}
& 2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Zn}(\mathrm{~s}) \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \\
& \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Co}(\mathrm{~s}) \rightarrow \text { No reaction } \\
& 2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Co}(\mathrm{~s}) \rightarrow \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s})
\end{aligned}
$$

Using the above information, the order of increasing activity of the metals is
A. $\mathrm{Ag}<\mathrm{Zn}<\mathrm{Co}$
B. $\mathrm{Co}<\mathrm{Ag}<\mathrm{Zn}$
C. $\mathrm{Co}<\mathrm{Zn}<\mathrm{Ag}$
D. $\mathrm{Ag}<\mathrm{Co}<\mathrm{Zn}$
35. Which compound gives two distinct peaks in its NMR spectrum?
A. $\mathrm{C}_{6} \mathrm{H}_{6}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C.

D. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
36. Which substance is most likely to react with hydroxide ions by means of a $\mathrm{S}_{\mathrm{N}} 1$ mechanism?
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Cl}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
37. When the compounds below are listed in order of decreasing boiling point (highest to lowest) what is the correct order?

1. ethane
2. fluoroethane
3. ethanol
4. ethanoic acid
A. $4,3,1,2$
B. $4,3,2,1$
C. $3,4,1,2$
D. $2,1,3,4$
5. Which reagent reacts with $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$?
I. LiAlH_{4}
II. $\mathrm{H}^{+} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
A. I only
B. II only
C. Both I and II
D. Neither I nor II
6. Which compound can show optical activity?
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COOH}$
C. $\mathrm{HOCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOOH}$
7. How many different structural isomers have the formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$?
A. 2
B. 3
C. 4
D. 5
