

MARKSCHEME

May 2000

CHEMISTRY

Higher Level

Paper 3

OPTION C – HUMAN BIOCHEMISTRY

C1. (a) (i)

(b)

(c)

(Award [1] for either circled C and [1] for the whole structure.)	[2]
(ii) In the ring structure of glucose, on the C_1 atom/the "carbonyl" C the H/OH are in different positions in α/β OR illustration of this (diagrammatically).	[1] [1]
(i) glucose and fructose	[2]
(ii) glucose (and glucose)	[1]
(Award [1] for any of the below.)	
Food or energy reserves/resources/stores/glycogen/starch Structure/cell walls/cellulose/chitin.	[1]

Total [8 marks]

C2.	(a)	6.		[1]						
	(b)	(i)	Chromatography and electrophoresis.	[2]						
		(ii)	(Award up to [4] for the following points for EITHER paper chromatography OR electrophoresis.)							
			Paper chromatography:							
	hydrolyse/release amino acids/heat with acid; place sample spot on paper; place paper in solvent (or suitable named solvent); compare distances travelled/ R_f values with known values.									
		OR	Electrophoresis:							
			hydrolysis; 'loading' onto origin; variable voltage/distance moved from origin; compare isoelectric points (standards) <i>etc</i> .	[1] [1] [1] [1]						
	(c)		<u>pH 4.5</u> <u>pH 6</u> <u>pH 7.5</u>							
			$\begin{array}{cccc} H_{3}^{+}N & H_{3}^{+}N - COO^{-} & H_{2}N - COO^{-} \\ [1] & [1] & [1] & [1] \end{array}$	[3]						
		Looking for functional groups only.								
		(In absence of other marks: three correct structures at wrong pH, award [1] .)								

Total [10 marks]

A **labelled** correct diagram (i.e. axes labelled, correct shape) could score these two marks, for example:

Satisfactory explanation of one region of graph:

	Many free active sites initially; [active sites being occupied/becoming more saturated].				
(b)	Temperature:	increased rate initially;		[1]	

but then reduced markedly $(\rightarrow 0)$; [1]

A **labelled** correct diagram (i.e. axes labelled, correct shape) could score these two marks, for example:

enzyme destroyed/denatured;	[1]
since stabilising H bonds disrupted (or words to that effect).	[1]

Total [7 marks]

OPTION D – ENVIRONMENTAL CHEMISTRY

			Sour	<u>ce</u>		Reduction of emission		
D1.	(a)	(i)	Incomplete combustion C-containing fuel/named	of I fuel	[1]	Use catalytic converter*	[1]	
		(ii)	Burning sulfur-containing	ng fuel/coal	[1]	Desulfurisation/scrubbing (flue gases)	[1]	
		(iii)	Reaction of gases in air/ oxygen (at high tempera	nitrogen and trure)	[1]	Use catalytic converter*	[1]	
* al	low c a	ıtalyti	c converter once only					
		(Awa	rd final mark for correct	product from o	ne of	the above:)		
		(i)	Carbon dioxide;					
		(ii)	Sulfur/sulfate/hydrogen	sulfide;		[1]		
		(iii) Nitrogen.						[6]
	(b)	One	of SO_2 or NO_x (however	described)				[1]
		EIT	IER $SO_2 + H_2O \Rightarrow H_2SO_2$	\mathcal{O}_3				[1]
		OR	$2NO + 1\frac{1}{2}O_2 + H_2$	$O \rightarrow 2HNO_3$	(for	example)		
						Total	[8 ma	rks]
D2.	(a)	Amo Redu	unt of oxygen needed to l ced availability of oxyge	oreak down org n/fewer living o	anic v organi	vastes; sms.		[1] [1]
	(b)	Seco Activ Orga	ndary treatment; ated sludge process; nic matter broken down/o	oxidised by bac	teria.			[1] [1] [1]
	 (c) Plant growth encouraged; Oxygen concentration reduced by plant decay. (Allow eutrophication as alternative to either of the above.) 					e above.)		[1] [1]

Total [7 marks]

D3.	(a)	(i) Le Ai	Lethal dose Amount needed to kill 50 % of animals given the dose.				
		(ii) Ao Di	lvantage: sadvantage:	Gives good indication of relative toxicities (of different chemicals) does not indicate acceptable environmental level of chemical /does not help to make accurate assumptions re effect on humans.	[1] [1]		
	(b)	Lead:	Source: Effect: Reducing:	paints/PbEt ₄ in petrol, therefore exhaust gas/lead pipes in plumbing; brain damage (especially in children); unleaded petrol/lead-free paints/use of copper or plastic pipes.	[1] [1] [1]		
		Nitrates	: Source: Effect:	leaching of nitrate fertilisers into rivers stomach cancer/affects haemoglobin (in the young)/'blue baby' syndrome:	[1] [1]		
			Reducing:	use less fertiliser/avoid use before rain is due.	[1]		

Total [10 marks]

- 11 -

OPTION E – CHEMICAL INDUSTRIES

E1.	(a)	Accept a temperature range 400–500) °C in each case.	[1]		
		Pressure 150–500 atm (Haber)	1–2 atm (Contact)	[1]		
		Catalyst iron/iron oxide	Vanadium (pent/V) oxide	[1]+[1]		
		(For each process, 3 correct condition	ons [2] , 2 correct [1] .)			
	(b)	$N_2 + 3H_2 \rightleftharpoons 2NH_3$ (state symbols NOT required).				
		(Don't penalise absence of reversible symbol.)				
		High temperature increases rate/gives But low yield of NH ₃ Some comment on a compromise tem	s greater rate of reaction	[1] [1] [1]		
	(c)	Raw Materials – naphtha, methan	e, other hydrocarbon (saturated);	[1]		
		– high temperature	e/heat/catalyst ([1] for any one of the three.)	[1]		
		(Award [1] for any one of the followi	ng equations.)			

 $C_{7}H_{16} \rightarrow C_{6}H_{5}CH_{3} + 4H_{2}O$ $C_{6}H_{14} \rightarrow C_{6}H_{6} + 4H_{2}$ $C_{2}H_{6} \rightarrow C_{2}H_{4} + H_{2}$ *etc.*(even) CH₄ + H₂O \rightarrow CO + 3H₂

[1]

Total [11 marks]

E2. (a) (Award [2] for any two of the following:)

'close' to C_2H_4 source; close to industries needing polythene; workforce; away from residential areas *etc.*

[2]

[1]

(b) Polar C—Cl bonds in PVC;[1]stronger intermolecular forces (than polythene).[1]

(c)
$$C_2H_3Cl + 2\frac{1}{2}O_2 \rightarrow 2CO_2 + H_2O + HCl$$
 (or doubled). [1]

(Credit polymer equations if correct. Equations given are intentionally simplified.)

$$-C_2H_4 - +3O_2 \rightarrow 2CO_2 + 2H_2O$$
 [1]

Comment on HCl being toxic or poisonous/no poisonous gases from polyethene. [1]

(d) (Radical mechanism):

$$e.g. R \bullet + CH_2 = CH_2 \rightarrow R - CH_2 - CH_2 \bullet$$
[1]

$$e.g. \ \mathsf{R}-\mathsf{CH}_2-\mathsf{CH}_2\bullet+\mathsf{CH}_2=\mathsf{CH}_2\to\mathsf{R}-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2\bullet$$
[1]

equation for termination step, e.g. $2R \cdot \rightarrow R_2$

(Detailed word descriptions of above may be awarded marks. If none of above marks are scored, [1] may be awarded for mention of initiation, propagation and termination.)

(Ionic mechanism):

$$e.g. A - B + CH_2 = CH_2 \rightarrow A - CH_2 - CH_2^+ (+B^-)$$
[1]

$$e.g. A - CH_2 - CH_2^+ + CH_2 = CH_2 \rightarrow A - CH_2 - CH_2 - CH_2 - CH_2^+$$
[1]

(Detailed word descriptions of above may be awarded marks.)

Total [14 marks]

OPTION F – FUELS AND ENERGY

F1.	(a)	(i)	219; 86.	[1] [1]
		(ii)	Mass numberNo change;Atomic number+1.	[1] [1]
	(b)	(i)	Time taken for activity to decrease by half (or words to that effect).	[1]
		(ii)	11.7 days. Some working essential, <i>e.g.</i> 3-half lives mentioned.	[1] [1]
		(iii)	$\frac{7}{8}$ or 0.875 or 87.5 %.	[1]
		(iv)	12.5 % or $\frac{1}{8}$.	[1]
				Total [9 marks]
F2.	(a)	Zinc and g	graphite (accept carbon).	[1] [1]
	(b)	Volta Powe	age – potential difference between electrodes; er – total quantity of electricity available.	[1] [1]
		Volta Powe	age affected by the materials used; er affected by the quantity of materials used.	[1] [1]

Total [6 marks]

F3.	(a)	Energy released when nucleus is synthesised from protons and neutrons/energy		
		needed to split a nucleus into protons and neutrons.	[1]	
²²³ Ra needs to become more stable.				
		This is achieved by losing mass/an α -particle.	[1]	

(b)	<u>Nature of</u> <u>Waste</u>	<u>Source</u>		<u>Characteristic</u>		<u>Storage</u>		
	Low-level waste	Hospitals / checking welds / monitoring thickness of <i>e.g.</i> paper	[1]	Activity is low / short half-life / high volume	[1]	Stored until activity is reduced	[1]	
	<u>High-level</u> <u>waste</u>	Nuclear industry / military	[1]	Activity is high / long half-life / low volume	[1]	Making into glass / deep burial	[1]	[6]
	(Award final	mark for one extra	a poin	t from list above.)				[1]

Total [10 marks]

OPTION G – MODERN ANALYTICAL CHEMISTRY

Total [11 marks]

(a)	\mathbf{R}_{f} =	distance travelled by 'solute' distance travelled by solvent	[1]
(b)	(i)	Measure distance travelled by blue spot (centre) and solvent Divide one by the other	[1] [1]
	(ii)	Each dye has different attractions/affinities for the paper and the solvent (or words to that effect).	[1] [1]
		(Solvent reference may be to solubility rather than attraction/affinity.)	
	(iii)	Negligible attraction between the dye and paper compared with that of dye and solvent (or solubility of dye in solvent).	[1] [1]
		(In absence of the above award [1] for the distance moved by the dye = distance moved by the solvent.)	
	(a) (b)	 (a) R_f = (b) (i) (ii) (iii) 	 (a) R_f = distance travelled by 'solute' distance travelled by solvent (b) (i) Measure distance travelled by blue spot (centre) and solvent Divide one by the other (ii) Each dye has different attractions/affinities for the paper and the solvent (or words to that effect). <i>(Solvent reference may be to solubility rather than attraction/affinity.)</i> (iii) Negligible attraction between the dye and paper compared with that of dye and solvent (or solubility of dye in solvent). <i>(In absence of the above award [1] for the distance moved by the dye = distance moved by the solvent.)</i>

(If both structures and bonding are correct but non-bonding electrons are not shown award a maximum of [1].)

(b)	ONH_3		HONH ₂		
Number of Peaks	<u>s</u> 1	[1]	2	[1]	
Relative Areas			1:2	[1]	
<u>Reasoning</u>	All protons chemically equivalent (or words to that effect)	[1]	Protons in different chemical environment	[1]	[5]

Total [7 marks]

OPTION H – FURTHER ORGANIC CHEMISTRY

н1.	(a)	Electrophilic addition.	[1]
		Arrow from double bond to H^+ (or H of H—Cl)	[1]
		Structure of carbocation $(CH_3 - CH_3)$	[1]
		Arrow showing attack by Cl ⁻ on central carbon of carbocation	[1]
	(b)	CH ₃ CH ₂ CH ₂ Cl	[1]
		Primary carbocation/ $CH_3CH_2CH_2^+$ is less stable or less likely to be formed (or	
		secondary carbocation is more stable or more likely to be formed).	[1]
		Explanation of different stabilities of carbocations (in terms of inductive effect or shoring of shores)	[1]
		sharing of charge).	[1]
	(c)	(Substitution by) an electron-rich species (e.g. NH_3 ; X^-)	[1]
		(lone pair)/Lewis base/Brønsted base	
	(d)	Arrow from C—Cl bond to Cl atom	[1]
		Structure of carbocation $(CH_3 - CH_3)$	[1]
		Arrow showing attack by OH on central carbon of carbocation	[1]
		OR	
		Arrow from C—Cl bond to Cl atom	[1]
		Arrow showing attack by OH on central carbon of halogenoalkane	[1]
		Structure of intermediate (Cl and OH both bonded by to central C)	[1]

Total [11 marks]

H2.	(a)	dichlorodifluoromethane (accept difluorodichloromethane) 1,1,2-trichloro,1,2,2-trifluoroethane (accept 1,1,2-trifluoro,1,2,2-trichloroethane)	[1] [1]
	(b)	absorbs UV-radiation from the sun.	[1]
	(c)	(i) (Saturated) compounds with high bond energies.	[1]
		(ii) C—Cl bond weaker than C—F C—Cl more easily broken (than C—F).	[1] [1]
	(d)	$\begin{array}{c} \text{Cl} \bullet +\text{O}_3 \to & \text{OCl} \bullet & +\text{O}_2 \\ \text{(more correctly} \\ \text{ClO}\bullet) \end{array}$	[1]
		Total [7 m	arks]
Н3.	(a)	Chiral carbon atom/C atom joined to 4 different groups Two drawings showing enantiomers/chiral structures (object-mirror images). (These may be incomplete showing only the 'chiral centre'.)	[1] [2]
	(b)	Light vibrating in one plane only.	[1]
		Optically active compounds – rotate plane of polarisation of plane-polarised light.	[1]
		When racemic mixture obtained equimolar concentrations of stereoisomers affecting plane of polarisation equally and oppositely.	[1] [1]
		Total [7 m	arks]