BACCALAURÉAT

MARKSCHEME

May 2000

CHEMISTRY

Higher Level

Paper 3

OPTION C - HUMAN BIOCHEMISTRY

C1. (a) (i)

(Award [1] for either circled C and [1] for the whole structure.)

(ii) In the ring structure of glucose, on the C_{1} atom/the "carbonyl" C

the H / OH are in different positions in α / β

OR illustration of this (diagrammatically).
(b) (i) glucose and fructose [2]
(ii) glucose (and glucose)
(c) (Award [1] for any of the below.)

Food or energy reserves/resources/stores/glycogen/starch
Structure/cell walls/cellulose/chitin.C2. (a) 6 .[1]
(b) (i) Chromatography and electrophoresis. [2]
(ii) (Award up to [4] for the following points for EITHER paper chromatography OR electrophoresis.)
Paper chromatography:
hydrolyse/release amino acids/heat with acid; [1]
place sample spot on paper; [1]
place paper in solvent (or suitable named solvent); [1]
compare distances travelled $/ \mathrm{R}_{f}$ values with known values. [1]
OR Electrophoresis:
hydrolysis; [1]
'loading' onto origin; [1]
variable voltage/distance moved from origin; [1]
compare isoelectric points (standards) etc. [1]
(c)
pH 4.5pH 6pH 7.5
$\underset{\text { [1] }}{\mathrm{H}_{3}^{+} \mathrm{N}-}$
$\mathrm{H}_{3}^{+} \mathrm{N}-\mathrm{COO}^{-}$ [1]
$\mathrm{H}_{2} \mathrm{~N}-\mathrm{COO}^{-}$ [1][3]

Looking for functional groups only.
(In absence of other marks: three correct structures at wrong pH, award [1].)

C3. (a) Substrate concentration: activity/rate increases initially (first order);

A labelled correct diagram (i.e. axes labelled, correct shape) could score these two marks, for example:

Satisfactory explanation of one region of graph:

Many free active sites initially;
[active sites being occupied/becoming more saturated].
(b) Temperature: increased rate initially;

A labelled correct diagram (i.e. axes labelled, correct shape) could score these two marks, for example:

enzyme destroyed/denatured; [1]
since stabilising H bonds disrupted (or words to that effect).

OPTION D - ENVIRONMENTAL CHEMISTRY

Source

Reduction of emission

D1. (a) (i) Incomplete combustion ofC-containing fuel/named fuel[1]
(ii) Burning sulfur-containing fuel/coal [1] Desulfurisation/scrubbing (flue gases) [1]
(iii) Reaction of gases in air/nitrogen and oxygen (at high temperatrure)
Use catalytic converter* [1] [1]

* allow catalytic converter once only(Award final mark for correct product from one of the above:)
(i) Carbon dioxide;
(ii) Sulfur/sulfate/hydrogen sulfide; [1]
(iii) Nitrogen. [6]
(b) One of SO_{2} or NO_{x} (however described) [1]
EITHER $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{SO}_{3}$ [1]
OR $\quad 2 \mathrm{NO}+1 \frac{1}{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3} \quad$ (for example)
Total [8 marks]
D2. (a) Amount of oxygen needed to break down organic wastes; [1]
Reduced availability of oxygen/fewer living organisms. [1]
(b) Secondary treatment; [1]
Activated sludge process; [1]
Organic matter broken down/oxidised by bacteria. [1]
(c) Plant growth encouraged; [1]
Oxygen concentration reduced by plant decay. [1]
(Allow eutrophication as alternative to either of the above.)
D3. (a) (i) Lethal dose [1]
Amount needed to kill 50% of animals given the dose. [1]
(ii) Advantage: Gives good indication of relative toxicities (of different chemicals) [1]
Disadvantage: does not indicate acceptable environmental level of chemical [1]/does not help to make accurate assumptions re effect onhumans.
(b) Lead: Source: paints $/ \mathrm{PbEt}_{4}$ in petrol, therefore exhaust gas/lead pipes in [1] plumbing;
Effect: brain damage (especially in children); [1]
Reducing: unleaded petrol/lead-free paints/use of copper or plastic pipes. [1]
Nitrates: Source: leaching of nitrate fertilisers into rivers. [1]
Effect: stomach cancer/affects haemoglobin (in the young)/‘blue baby’ [1]syndrome;
Reducing: use less fertiliser/avoid use before rain is due. [1]

OPTION E - CHEMICAL INDUSTRIES

E1. (a) Accept a temperature range $400-500{ }^{\circ} \mathrm{C}$ in each case. [1]
Pressure 150-500 atm (Haber) [1]
Catalyst iron/iron oxide \quad Vanadium (pent/V) oxide [1] $[1]$
(For each process, 3 correct conditions [2], 2 correct [1].)
(b) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ (state symbols NOT required). [1]
(Don't penalise absence of reversible symbol.)
High temperature increases rate/gives greater rate of reaction [1]
But low yield of NH_{3} [1]
Some comment on a compromise temperature [1]
(c) Raw Materials - naphtha, methane, other hydrocarbon (saturated); [1]

- high temperature/heat/catalyst ([1] for any one of the three.) [1]
(Award [1] for any one of the following equations.)
$\mathrm{C}_{7} \mathrm{H}_{16} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{6} \mathrm{H}_{14} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}+4 \mathrm{H}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$
etc.
(even) $\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}$

E2. (a) (Award [2] for any two of the following:)
'close' to $\mathrm{C}_{2} \mathrm{H}_{4}$ source;
close to industries needing polythene;
workforce;
away from residential areas
etc.
(b) Polar $\mathrm{C}-\mathrm{Cl}$ bonds in PVC ; [1] stronger intermolecular forces (than polythene). [1]
(c) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+2 \frac{1}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl}$ (or doubled).
(Credit polymer equations if correct. Equations given are intentionally simplified.)
$-\mathrm{C}_{2} \mathrm{H}_{4}-+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Comment on HCl being toxic or poisonous/no poisonous gases from polyethene.
(d) (Radical mechanism):

Free radical mentioned e.g. $\mathrm{R} \cdot$ or $\mathrm{A} \cdot$ or $\mathrm{R}-\mathrm{O}-\mathrm{O} \cdot$
e.g. $\mathrm{R} \cdot+\mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \cdot$
e.g. $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \bullet+\mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow \mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \cdot$
equation for termination step, e.g. $2 \mathrm{R} \bullet \rightarrow \mathrm{R}_{2}$
(Detailed word descriptions of above may be awarded marks. If none of above marks are scored, [1] may be awarded for mention of initiation, propagation and termination.)
(Ionic mechanism):
(Ziegler) catalyst.
e.g. $\mathrm{A}-\mathrm{B}+\mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow \mathrm{~A}-\mathrm{CH}_{2}-\mathrm{CH}_{2}^{+}\left(+\mathrm{B}^{-}\right)$
e.g. $\mathrm{A}-\mathrm{CH}_{2}-\mathrm{CH}_{2}^{+}+\mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow \mathrm{~A}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}^{+}$
(Detailed word descriptions of above may be awarded marks.)

OPTION F - FUELS AND ENERGY

F1. (a) (i) 219; [1]
86. [1]
(ii) Mass number No change; [1]
Atomic number +1 [1]
(b) (i) Time taken for activity to decrease by half (or words to that effect). [1]
(ii) 11.7 days. [1]
Some working essential, e.g. 3-half lives mentioned. [1]
(iii) $\frac{7}{8}$ or 0.875 or 87.5%. [1]
(iv) 12.5% or $\frac{1}{8}$. [1]
Total [9 marks]
F2. (a) Zinc [1]
and graphite (accept carbon). [1]
(b) Voltage - potential difference between electrodes; [1]
Power - total quantity of electricity available. [1]
Voltage affected by the materials used; [1]
Power affected by the quantity of materials used. [1]
F3. (a) Energy released when nucleus is synthesised from protons and neutrons/energy needed to split a nucleus into protons and neutrons. [1]
${ }^{223} \mathrm{Ra}$ needs to become more stable. [1]
This is achieved by losing mass/an α-particle. [1]

(b)
$\frac{\text { Nature of }}{\underline{\text { Waste }}}$
$\frac{\text { Low-level }}{\underline{\text { waste }}}$

Source
Hospitals /
checking welds
/ monitoring
thickness of
e.g. paper
High-level

$\underline{\text { waste }}$ | Nuclear |
| :--- |
| industry / |
| military | [1]

(Award final mark for one extra point from list above.)

Characteristic

Activity is low / Stored until short half-life / activity is high volume [1] reduced

Storage

 [1] reduced [1] II(Award final mark for one extra point from list above.)

OPTION G - MODERN ANALYTICAL CHEMISTRY

G1. (a)

Light ions deflected more than heavy ions $/>1$ signal obtained
OR ions $(+)$ of different mass/charge ratio give >1 line [1].
(General shape needed for full marks.)
(b) (i) $\left(35 \times \frac{75}{100}\right)+\left(37 \times \frac{25}{100}\right)$
$=35.50$
(ii)

Both axes correctly labelled;
Three lines at 70, 72 and 74;
Heights of lines in correct order ($70>72>74$)

G2. (a) $\mathrm{R}_{f}=\frac{\text { distance travelled by 'solute' }}{\text { distance travelled by solvent }}$
(b) (i) Measure distance travelled by blue spot (centre) and solvent

Divide one by the other
(ii) Each dye has different attractions/affinities for the paper
and the solvent (or words to that effect).
(Solvent reference may be to solubility rather than attraction/affinity.)
(iii) Negligible attraction between the dye and paper compared with that of dye and solvent (or solubility of dye in solvent).
(In absence of the above award [1] for the distance moved by the dye $=$ distance moved by the solvent.)

G3. (a)

[1]
[1]
(If both structures and bonding are correct but non-bonding electrons are not shown award a maximum of [1].)
(b)

$$
\mathrm{ONH}_{3}
$$

1
Number of Peaks
Relative Areas
Reasoning All protons chemically equivalent (or words to that effect)

Protons in different chemical environment
[1]
$\underline{\mathrm{HONH}_{2}}$

2

OPTION H - FURTHER ORGANIC CHEMISTRY

H1. (a) Electrophilic addition. [1]
Arrow from double bond to H^{+}(or H of $\mathrm{H}-\mathrm{Cl}$) [1]
Structure of carbocation $\left(\mathrm{CH}_{3}-{ }^{+} \mathrm{CH}-\mathrm{CH}_{3}\right)$ [1]
Arrow showing attack by Cl^{-}on central carbon of carbocation [1]
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ [1]
Primary carbocation/ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}^{+}$is less stable or less likely to be formed (or secondary carbocation is more stable or more likely to be formed). [1]
Explanation of different stabilities of carbocations (in terms of inductive effect or sharing of charge). [1]
(c) (Substitution by) an electron-rich species (e.g. $\mathrm{NH}_{3} ; X^{-}$) [1]
(lone pair)/Lewis base/Brønsted base
(d) Arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl atom [1]
Structure of carbocation $\left(\mathrm{CH}_{3}-{ }^{+} \mathrm{CH}-\mathrm{CH}_{3}\right)$ [1]
Arrow showing attack by ${ }^{-} \mathrm{OH}$ on central carbon of carbocation [1]
OR
Arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl atom [1]
Arrow showing attack by ${ }^{-} \mathrm{OH}$ on central carbon of halogenoalkane [1]
Structure of intermediate (Cl and OH both bonded by --- to central C) [1]
H2. (a) dichlorodifluoromethane (accept difluorodichloromethane) [1]
1,1,2-trichloro,1,2,2-trifluoroethane (accept 1,1,2-trifluoro,1,2,2-trichloroethane) [1]
(b) absorbs UV-radiation from the sun. [1]
(c) (i) (Saturated) compounds with high bond energies. [1]
(ii) $\mathrm{C}-\mathrm{Cl}$ bond weaker than $\mathrm{C}-\mathrm{F}$ [1]
$\mathrm{C}-\mathrm{Cl}$ more easily broken (than $\mathrm{C}-\mathrm{F}$). [1]
(d) $\mathrm{Cl} \bullet+\mathrm{O}_{3} \rightarrow \underset{\text { (more correctly }}{\mathrm{OCl} \bullet}+\mathrm{O}_{2}$ [1]
ClO•)
Total [7 marks]
H3. (a) Chiral carbon atom/ C atom joined to 4 different groups [1]
Two drawings showing enantiomers/chiral structures (object-mirror images). [2](These may be incomplete showing only the 'chiral centre'.)
(b) Light vibrating in one plane only. [1]
Optically active compounds - rotate plane of polarisation of plane-polarised light. [1]
When racemic mixture obtained [1]
equimolar concentrations of stereoisomers affecting plane of polarisation equallyand oppositely.[1]

