

MARKSCHEME

May 2000

CHEMISTRY

Higher Level

Paper 2

[1]

SECTION A

Endothermic/heat absorbed/energy absorbed / increase in enthalpy / needs (a

1.

(a) (i)

lot of) energy

		(ii)	$K_{\rm c}$ is decreased / OWTTE. Since heat is removed / since equilibrium moves to left / reverse reaction	[1]
			favoured.	[1]
		(iii)	$ \begin{array}{c} N_2 + O_2 \rightleftharpoons 2NO \\ (1.6-x) & (1.6-x) & 2x \end{array} $	[1]
			$K_{\rm c} = \frac{[\rm NO]^2}{[\rm N_2][\rm O_2]}$	[1]
			[NO] = 0.065 mol dm ⁻³ (If candidate uses 1.6 instead of $(1.6-x)$, which gives an answer of 0.066, award [2] unless it is specifically stated that an approximation has been made or $1.6 \gg x$.)	[1]
	(b)	(i)	O_3 : 1st order plus reasonable attempt to justify (<i>e.g.</i> double $[O_3]$ doubles	
			rate). NO: 1st order plus reasonable attempt to justify (<i>e.g.</i> triple $[O_3]$ and triple	[1]
			[NO], rate is × 9.) (Two correct orders but no reasoning, award [1].)	[1]
			Rate = $k[O_3][NO]$ (accept rate expression consistent with stated orders – <i>ECF principle</i>)	[1]
		(ii)	$0.66 \times 10^{-4} = k \times 3 \times 10^{-6} \times 10^{-6}$ $k = 2.2 \times 10^7$ [1] dm ³ mol ⁻¹ s ⁻¹ [1] (Apply error carried forward (ECF) from rate expression in (i). U-1 may be applied.)	[2]
		(iii)	Rate (experiment 4) = $2.2 \times 10^7 \times 4.5 \times 10^{-6} \times 7.2 \times 10^{-6} = 7.13 \times 10^{-4}$	[1]
			OR Rate (experiment 4) = Rate (experiment 3) $\times \frac{3}{2} \times \frac{8}{10} = 7.13 \times 10^{-4}$	
			(Apply ECF from rate expression in (i), must be experiment 4, units not required.)	
2.	(a)	since	has higher boiling point; thas greater M_r / greater number of electrons / greater number of carbons; teater intermolecular forces / more energy needed.	[1] [1] [1]
	(b)	CH ₃ CH ₂ OH has higher boiling point;		
		-	ogen bonding between molecules; ore energy needed to separate molecules / so greater intermolecular forces.	[1] [1]

3.	(a)	Acidic because H^+ donor and basic because H^+ acceptor. Suitable equation OWTTE involving water	[1] [1]
	(b)	O^{2-} /oxide ion (allow O^{-2})	[1]
	(c)	Electrical conductivityORpH meter (or indicator paper)Strong: good conductorORStrong: low pHWeak: poor conductorORWeak: high pH(Allow full range indicator, do not allow litmus, use judgement on other methods.)	[1] [1] [1]
	(d)	Ratio of moles = 60×0.2 : 40×0.15 (acid:alkali) = 2:1	[1]
		Acid is in excess and reacts to form salt. Moles acid:moles salt = 1:1	[1]
		$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} / [H^{+}] = K_{a} \frac{[HA]}{[A^{-}]}$	[1]
		pH = 4.86	[1]
		(Weak acid calculation based on excess acid giving a pH of 3.04 [3 max]; Weak acid calculation based on total acid giving a pH of 2.80 [2 max];	

Weak acid calculation based on total acid giving a pH of 2.89 [2 max]; Solution based on ½ neutralisation worth [4]; Working must be shown.)

-7-

4. (a) Reducing agent donates/loses electrons / OWTTE.[1](b) Current flow: $Al \rightarrow Ni$ [1] $Al \ominus, Ni \oplus (both)$ [1]

(c)
$$2AI + 3Ni^{2+} \rightarrow 3Ni + 2AI^{3+}$$
 [2]

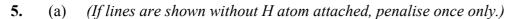
(Award [1] for correct species on correct sides of equation and [1] for correct coefficients, even if equation reversed.)

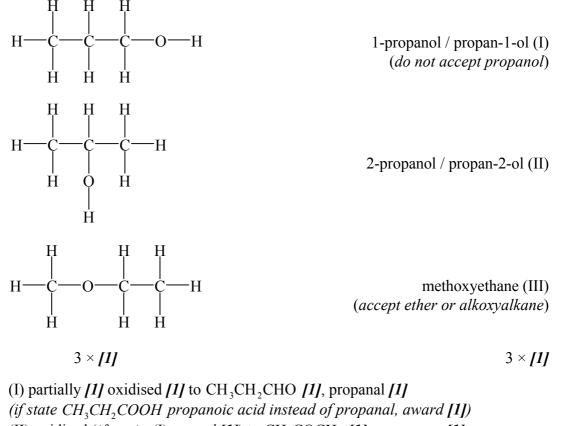
$$E^{\ominus} = +1.43 \,\mathrm{V} \tag{2}$$

(Award [1] each for sign and value. Allow -1.43 V if equation reversed - ECF principle. If signs not appropriate but value correct, award [1]. If E^{\ominus} values added, award [0].)

(d) Seconds $= 2 \times 3600$ **OR** 7200 [1]

Coulombs
$$= 8 \times 2 \times 3600$$
 OR 57600 [1]


 $\div F = \frac{57\,600}{96\,480} \qquad \text{OR} \quad 0.5970 \qquad [1]$


$$\div 6 \qquad = \frac{57\,600}{96\,480 \times 6} \tag{1}$$

Answer
$$= 0.09950 = 0.10(00)$$
 [1]

(Correct answer with no working, [4 max].)

SECTION B

- (II) oxidised (*if not in (I), award* [1]) to CH₃COCH₃ [1], propanone [1] (I) or (II): orange to green [2]
- (c) alkanols show bands above 3000 cm^{-1} [1]III is the choice[1]since it has C-O(-O) but no -O-H[1]
- (d) A is I [1] 3 Hs in CH_3 , 2 Hs in adjacent CH_2 , 2 Hs in next CH_2 , 1 H in OH [1] B is II [1] 6 Hs in the two CH_3 s, 1 H in CH, 1 H in OH [1]
- (e) I and II both give $CH_3CH = CH_2 / CH_3CHCH_2$ [1] $CH_3CH = CH_2 + H_2 \rightarrow CH_2CH_2CH_3$ OR $CH_3CH = CH_2 + HBr \rightarrow CH_3CHBrCH_3 (or <math>CH_3CH_2CH_2Br)$ OR $CH_3CH = CH_2 + H_2O \rightarrow CH_3CHOHCH_3 (or <math>CH_3CH_2CH_2OH)$ OR $CH_3CH = CH_2 + Br_2 \rightarrow CH_3CHBrCH_2Br$

Reagents [1]

(b)

Product [1]

OR $CH_3CH = CH_2 + high pressure, high temperature/catalyst$

content of bracket [1]

idea of polymerisation [1]

[8]

6.	(a)	(i)	MgO ionic	[1]
			SiO_2 covalent	[1]
			both giant structures	[1]
			ionic bonds strong	[1]
			covalent bonds strong	[1]
			P_4O_6 simple molecular	[1]
			SO_2 covalent	[1]
			weak intermolecular forces / bonds	[1]

1	(i	i)
	<i>(</i> -	-)

Oxide	Solubility	Acidic/Alkaline/Neutral
Magnesium	Soluble	Alkaline
Silicon	Insoluble	Neutral
Phosphorus	Soluble	Acidic
Sulphur	Soluble	Acidic

4 correct = [3]	$4 \operatorname{correct} = [3]$	
$3 \operatorname{correct} = [2]$	$3 \operatorname{correct} = [2]$	
$2 \operatorname{correct} = [1]$	$2 \operatorname{correct} = [1]$	max [6]

$$\begin{array}{ll} MgO + H_2O \rightarrow Mg(OH)_2 & [1] \\ P_4O_6 + 6H_2O \rightarrow 4H_3PO_3 & (formula of acid [1], balanced [1]) & [2] \\ SO_2 + H_2O \rightarrow H_2SO_3 & [1] \\ (Accept suitable ionised versions, e.g. Mg^{2+} + 2OH^- instead of Mg(OH)_2, \\ HSO_3^- + H^+ instead of H_2SO_3.) \end{array}$$

(b) Ti
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2 / [Ar] 4s^2 3d^2$$

Variable valency / oxidation		
state / OWTTE	[1]	removal/sharing of several electrons [1]
coloured compounds	[1]	splitting of d orbitals, electron transitions [1]
complex compounds	[1]	accepting of electron pairs [1]
catalytic activity	[1]	complex formation/change of valency/can
		easily be oxidised or reduced [1]

[3] [3]

[1]

any three plus appropriate reason

7.	(a)	(i)	ΔH^{\ominus} is positive Reaction is endothermic (because products are at higher energy) Bonds in reactants must be stronger than those in products (because more energy must be added than is released).	[1] [1] [1]
		(ii)	ΔG^{\ominus} is negative because reaction is spontaneous ΔS^{\ominus} is positive Since ΔH^{\ominus} is positive, ΔS^{\ominus} must be positive in order to make ΔG^{\ominus} negative. $(\Delta G^{\ominus} = \Delta H^{\ominus} - T\Delta S^{\ominus})$ Products must be more disordered than reactants.	[1] [1] [1] [1]
		(iii)	Known volumes of reactant solutions at the same temperature are mixed and temperature is monitored. Mol of limiting reactant calculated from volume and known concentration. $q = \Delta T \times \text{mass of solution} \times C_p$ $\Delta H = q \text{ mol}^{-1}$ of limiting reactant Use of insulated reaction vessel Stir the mixture	[3] [1] [1] [1] [1] [1]
			Note: [6] max which must include: (a) known concentration of one volume; (b) excess or equal reacting mols of second solution; (c) temperature change; (d) $q = mass \times specific heat capacity \times \Delta T$	
		(iv)	If reactants do not react completely. If container is not insulated adequately, heat will be gained from surroundings . Insulate container sufficiently.	[1] [1] [1]
		(v)	Reaction becomes more spontaneous as <i>T</i> is increased less spontaneous as <i>T</i> is decreased. $T\Delta S^{\ominus}$ term will become larger as <i>T</i> is raised so ΔG^{\ominus} will become more negative. $T\Delta S^{\ominus}$ term will become smaller as <i>T</i> is lowered so ΔG^{\ominus} will become less negative (or even positive as $+\Delta H^{\ominus}$ exceeds $T\Delta S^{\ominus}$). (Accept arguments based on Le Chatelier's principle.)	[1] [1] [1] [1]
	(b)	(i)	$\Delta H_{\text{reaction}} = 2(A - A) \text{ bond energy} + B - B \text{ bond energy} - 4(A - B) \text{ bond energy}$ [1] for correct signs [1] for correct coefficients (Number of bonds should be clear.)	[2]

Tabulated bond energies are average values and may differ from those in (ii) specific compounds. [1] The best agreement is achieved when few bonds are broken / specific bond energies are used / for gaseous reactions. [1]

[1] each

[4]

8. (a) (i)

(Penalise missing lone pair once only)

H:N:H

Η

(ii) Bond angles in HNNH will be slightly larger than those in H₂NNH₂. [1]
 3 sets of electrons around the N atoms in HNNH (double bond, bond to H, lone pair) will be farthest apart at about 120° but the 4 sets in H₂NNH₂ will adopt a tetrahedral geometry with bond angles that are slightly less than 109° / OWTTE [2]

H:N:N:H

НН

H:N::N:H

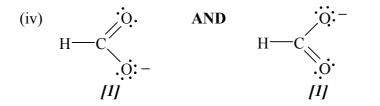
(iii) $N_2 - sp$ hybridisation, $NH_3 - sp^3$ hybridisation, $HNNH - sp^2$ hybridisation

(iv) HNNH has two isomers

:N::N:

nonpolar

polar


[1]

[1]

[2]

4 sigma bonds 1 pi bond[2]sigma bonds lie directly between the bonded nuclei / sigma bond strong[1]pi bonds lie above and below the line between the nuclei / pi bond weaker[1]

- (ii) one longer than the other [1] C = O shorter/extra e⁻ pair makes bond shorter. [1]
- (iii) C—O bonds of same length because of delocalisation / idea of resonance.

(Negative charge omitted – no penalty, electrons on O omitted – [0].)[1]Intermediate bonding or other sensible alternative statement.[1](Accept 1½ bonds / π electrons spread across C—O bonds.)[1]