

## CHEMISTRY HIGHER LEVEL PAPER 1

Tuesday 16 May 2000 (afternoon)

1 hour

## INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

220-203 16 pages

## Periodic Table

| 2<br><b>He</b><br>4.00 | 10<br>Ne<br>20.18      | 18<br><b>Ar</b><br>39.95 | 36<br><b>Kr</b><br>83.80 | 54<br><b>Xe</b><br>131.30 | 86<br><b>Rn</b><br>(222)    |                           |
|------------------------|------------------------|--------------------------|--------------------------|---------------------------|-----------------------------|---------------------------|
|                        | 9<br><b>F</b><br>19.00 | 17<br>Cl<br>35.45        | 35<br><b>Br</b><br>79.90 | 53<br><b>I</b><br>126.90  | 85<br><b>At</b> (210)       |                           |
|                        | 8<br><b>O</b><br>16.00 | 16<br><b>S</b><br>32.06  | 34<br><b>Se</b><br>78.96 | 52<br><b>Te</b><br>127.60 | 84 <b>Po</b> (210)          |                           |
|                        | 7<br><b>N</b><br>14.01 | 15<br><b>P</b><br>30.97  | 33<br><b>As</b><br>74.92 | 51<br><b>Sb</b><br>121.75 | 83<br><b>Bi</b><br>208.98   |                           |
|                        | 6<br>C<br>12.01        | 14<br><b>Si</b><br>28.09 | 32<br><b>Ge</b><br>72.59 | 50<br><b>Sn</b><br>118.69 | 82<br><b>Pb</b><br>207.19   |                           |
|                        | 5<br><b>B</b><br>10.81 | 13<br><b>Al</b><br>26.98 | 31<br><b>Ga</b><br>69.72 | 49<br><b>In</b><br>114.82 | 81<br><b>TI</b><br>204.37   |                           |
|                        |                        |                          | 30<br><b>Zn</b><br>65.37 | 48<br><b>Cd</b><br>112.40 | 80<br><b>Hg</b><br>200.59   |                           |
|                        |                        |                          | 29<br><b>Cu</b><br>63.55 | 47<br><b>Ag</b><br>107.87 | 79<br><b>Au</b><br>196.97   |                           |
|                        |                        |                          | 28<br><b>Ni</b><br>58.71 | 46<br><b>Pd</b><br>106.42 | 78<br><b>Pt</b><br>195.09   |                           |
|                        |                        |                          | 27<br><b>Co</b><br>58.93 | 45<br><b>Rh</b><br>102.91 | 77<br><b>Ir</b><br>192.22   | 109<br><b>Mt</b>          |
|                        |                        |                          | 26<br>Fe<br>55.85        | 44 <b>Ru</b> 101.07       | 76<br><b>Os</b><br>190.21   | 108<br><b>Hs</b>          |
|                        |                        |                          | 25<br><b>Mn</b><br>54.94 | 43<br><b>Tc</b><br>98.91  | 75<br><b>Re</b><br>186.21   | 107<br><b>Bh</b><br>(262) |
| Atomic Number          | Atomic Mass            |                          | 24<br><b>Cr</b><br>52.00 | 42<br><b>Mo</b><br>95.94  | 74<br><b>W</b><br>183.85    | 106<br><b>Sg</b><br>(263) |
| Atomic                 | Atomi                  |                          | 23<br>V<br>50.94         | 41<br><b>Nb</b><br>92.91  | 73<br><b>Ta</b><br>180.95   | 105<br><b>Db</b><br>(262) |
|                        |                        |                          | 22<br><b>Ti</b><br>47.90 | 40<br><b>Zr</b><br>91.22  | 72<br><b>Hf</b><br>178.49   | 104 <b>Rf</b> (261)       |
|                        |                        |                          | 21<br><b>Sc</b><br>44.96 | 39<br><b>Y</b><br>88.91   | 57 †<br><b>La</b><br>138.91 | 89 ‡ <b>Ac</b> (227)      |
|                        | 4<br><b>Be</b><br>9.01 | 12<br><b>Mg</b><br>24.31 | 20<br><b>Ca</b><br>40.08 | 38<br><b>Sr</b><br>87.62  | 56<br><b>Ba</b><br>137.34   | 88<br><b>Ra</b><br>(226)  |
| 1<br><b>H</b><br>1.01  | 3<br><b>Li</b><br>6.94 | 11<br><b>Na</b><br>22.99 | 19<br><b>K</b><br>39.10  | 37<br><b>Rb</b><br>85.47  | 55<br>Cs<br>132.91          | 87<br><b>Fr</b><br>(223)  |

| <del>- -</del> | 58<br>Ce<br>140.12     | 59<br><b>Pr</b><br>140.91 | 60<br><b>Nd</b><br>144.24 | 61<br><b>Pm</b><br>146.92 | 62<br><b>Sm</b><br>150.35 | 63<br><b>Eu</b><br>151.96 | 64<br><b>Gd</b><br>157.25 | 65<br><b>Tb</b><br>158.92 | 66<br><b>Dy</b><br>162.50 | 67<br><b>Ho</b><br>164.93 | 68<br><b>Er</b><br>167.26 | 69<br><b>Tm</b><br>168.93 | 70<br><b>Yb</b><br>173.04 | 71<br><b>Lu</b><br>174.97 |   |
|----------------|------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---|
|                |                        |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |   |
| ++             | 90                     | 91                        | 92                        | 93                        | 94                        | 95                        | 96                        | 97                        | 86                        | 66                        | 100                       | 101                       | 102                       | 103                       |   |
|                | $\mathbf{T}\mathbf{h}$ | Pa                        | Ω                         | ďN                        | Pu                        | Am                        | Cm                        | Bk                        | Cť                        | Es                        | Fm                        | Md                        | No                        | $\operatorname{Lr}$       | _ |
|                | 232.04                 | 231.04                    | 238.03                    | (237)                     | (242)                     | (243)                     | (247)                     | (247)                     | (251)                     | (254)                     | (257)                     | (258)                     | (259)                     | (260)                     |   |

220-203

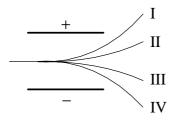
**1.** According to the equation:

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

what volume of air  $(20 \% O_2)$  is required to react with  $10 \text{ dm}^3$  of  $SO_2$ ?

- A.  $2 \text{ dm}^3$
- B.  $5 \text{ dm}^3$
- C.  $10 \text{ dm}^3$
- D. 25 dm<sup>3</sup>
- 2. Which of the following compounds has the greatest **empirical** formula mass?
  - A.  $C_6H_6$
  - B.  $C_4H_{10}$
  - C.  $C_3H_6$
  - D.  $C_2H_6$
- 3.  $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

When heated,  $CaCO_3$  ( $M_r = 100$ ) decomposes as shown above. When 20 g of impure  $CaCO_3$  is heated, 0.15 moles of  $CO_2$  are obtained. What is the percentage purity of the  $CaCO_3$ ? (Assume that none of the impurities produce  $CO_2$  upon heating.)


- A. 15
- B. 25
- C. 55
- D. 75

4. 
$$vC_2H_3Cl(g) + wO_2(g) \rightarrow xCO_2(g) + yH_2O(g) + zHCl(g)$$

Chloroethene can be burned in oxygen as shown above. What is the value of w when v = 2?

- A. 2
- B. 3
- C. 4
- D. 5
- **5.** Which of the following particles contain more electrons than **neutrons**?
  - I.  ${}^{1}_{1}H$
  - II. 35<sub>17</sub>Cl
  - III.  $^{39}_{19} \text{K}^+$
  - A. I only
  - B. II only
  - C. I and II only
  - D. II and III only
- **6.** The first four ionisation energies (kJ mol<sup>-1</sup>) for a particular element are 550, 1064, 4210 and 5500 respectively. This element should be placed in the same Group as
  - A. Li
  - B. Be
  - C. B
  - D. C

7. A certain element with two isotopes of masses M and M+2 is introduced into a mass spectrometer, vaporised and ionised. Which of the following paths are most likely for the resulting ions?

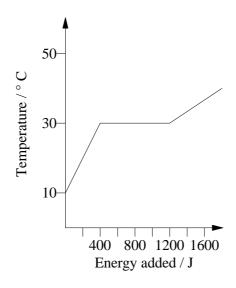


$$M + 2$$

- A. I IV
- B. II I
- C. IV III
- D. IV II
- **8.** A certain element has the electronic configuration  $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3$ . Which oxidation state(s) would this element most likely show?
  - A. +2 only
  - B. +3 only
  - C. +2 and +5 only
  - D. +2, +3, +4, +5
- **9.** Which one of the following increases in value from Li to Cs?
  - A. Atomic radius
  - B. Electronegativity
  - C. Ionisation energy
  - D. Melting point

| 10. | Whi  | ch of t | the following chlorides give neutral solutions when added to water?                       |
|-----|------|---------|-------------------------------------------------------------------------------------------|
|     |      | I.      | NaCl                                                                                      |
|     |      | II.     | $Al_2Cl_6$                                                                                |
|     |      | III.    | PCl <sub>3</sub>                                                                          |
|     | A.   | I onl   | у                                                                                         |
|     | B.   | I and   | l II only                                                                                 |
|     | C.   | II an   | d III only                                                                                |
|     | D.   | I, II a | and III                                                                                   |
| 11. | In w | hich o  | of the following is there at least one double bond?                                       |
|     |      | I.      | $\mathbf{O}_2$                                                                            |
|     |      | II.     | $CO_2$                                                                                    |
|     |      | III.    | $C_2H_4$                                                                                  |
|     | A.   | I onl   | у                                                                                         |
|     | B.   | III o   | nly                                                                                       |
|     | C.   | II an   | d III only                                                                                |
|     | D.   | I, II a | and III                                                                                   |
| 12. | Acco | ording  | to VSEPR theory, which molecule would be expected to have the <b>smallest</b> bond angle? |
|     | A.   | $H_2O$  |                                                                                           |
|     | B.   | $H_2C$  | О                                                                                         |
|     | C.   | $CH_4$  |                                                                                           |

 $NH_3$ 


D.

- 13. Which of the following can exist in **both** polar and non-polar forms?
  - A. CH<sub>2</sub>Cl<sub>2</sub>
  - B. C<sub>2</sub>HCl
  - C.  $C_2H_2Cl_2$
  - D. C<sub>2</sub>H<sub>3</sub>Cl
- **14.** What are the states of hybridisation for the carbon atoms in NCCH<sub>2</sub>COOH?

|    | CN     | $CH_2$ | COOF   |
|----|--------|--------|--------|
| A. | sp     | $sp^3$ | $sp^2$ |
| B. | sp     | $sp^2$ | $sp^3$ |
| C. | $sp^2$ | $sp^2$ | $sp^3$ |
| D. | $sp^2$ | $sp^3$ | $sp^2$ |

- 15. Which of the following best accounts for the observation that gases are easily compressed?
  - A. Gas molecules have negligible attractive forces for one another.
  - B. The volume occupied by the gas is much greater than that occupied by the molecules.
  - C. The average energy of the molecules in a gas is proportional to the absolute temperature of the gas.
  - D. The collisions between gas molecules are elastic.
- **16.** Which expression represents the density of a gas sample of relative molar mass,  $M_r$ , at temperature, T, and pressure, P?
  - A.  $\frac{PM_r}{T}$
  - B.  $\frac{RT}{PM_r}$
  - C.  $\frac{PM_{t}}{RT}$
  - D.  $\frac{RM_r}{PT}$

**17.** 



The heating curve for 10 g of a substance is given above. How much energy would be required to melt completely 20 g of the substance that is initially at  $10^{\circ}$  C?

- A. 2400 J
- B. 1200 J
- C. 800 J
- D. 400 J

18.

$$\begin{aligned} N_2(g) + O_2(g) &\rightarrow 2 \text{NO}(g) \\ N_2(g) + 2O_2(g) &\rightarrow 2 \text{NO}_2(g) \end{aligned} \qquad \Delta H = 180.4 \text{ kJ}$$

Use the enthalpy values above to calculate  $\Delta H$  for the reaction;

$$NO(g) + \frac{1}{2}O_2(g) \rightarrow NO_2(g)$$

- A. −57 kJ
- B. -114 kJ
- C. 57 kJ
- D. 114 kJ

**19.** In which reaction is the change in entropy ( $\Delta S$ ) closest to zero?

A. 
$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$

B. 
$$Br_2(l) \rightarrow Br_2(g)$$

C. 
$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

D. 
$$3Ca(s) + N_2(g) \rightarrow Ca_3N_2(s)$$

**20.** The Born–Haber cycle for the formation of potassium chloride includes the steps below:

I. 
$$K(g) \rightarrow K^{+}(g) + e^{-}$$

II. 
$$\frac{1}{2}Cl_2(g) \rightarrow Cl(g)$$

III. 
$$Cl(g) + e^{-} \rightarrow Cl^{-}(g)$$

IV. 
$$K^+(g) + Cl^-(g) \rightarrow KCl(s)$$

Which of these steps are exothermic?

- A. I and II only
- B. III and IV only
- C. I, II and III only
- D. I, III and IV only
- 21. Some collisions between reactant molecules do not form products. This is most likely because
  - A. the molecules do not collide in the proper ratio.
  - B. the molecules do not have enough energy.
  - C. the concentration is too low.
  - D. the reaction is at equilibrium.

- 22. Doubling which one of the following will double the rate of a first order reaction?
  - Concentration of the reactant A.
  - B. Size of solid particles
  - Volume of solution in which the reaction is carried out C.
  - D. Activation energy

23. 
$$F_2(g) + 2ClO_2(g) \rightarrow 2FClO_2(g)$$

The following data were obtained for the reaction above. Use these data to determine the orders for the reactants  $F_2$  and  $ClO_2$ .

| $[\mathbf{F}_2(\mathbf{g})]/\operatorname{mol} \mathbf{dm}^{-3}$ | $[ClO_2(g)]/moldm^{-3}$ | Rate $/ \text{mol dm}^{-3} \text{ s}^{-1}$ |
|------------------------------------------------------------------|-------------------------|--------------------------------------------|
| 0.1                                                              | 0.01                    | $1.2 \times 10^{-3}$                       |
| 0.1                                                              | 0.04                    | $4.8 \times 10^{-3}$                       |
| 0.2                                                              | 0.01                    | $2.4 \times 10^{-3}$                       |

| Order of $\mathbf{F_2}$ | reaction ClO <sub>2</sub> |
|-------------------------|---------------------------|
| 1                       | 1                         |
| 1                       | 2                         |
| 2                       | 1                         |
| 2                       | 4                         |
|                         | F <sub>2</sub> 1  1  2    |

**24.** 
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
  $\Delta H = -197.8 \text{ kJ}$ 

The reaction above is an important step in the production of sulfuric acid. An increase in which of the following will increase the ratio of  $\frac{SO_3(g)}{SO_2(g)}$  at equilibrium?

- A. Pressure only
- B. Temperature only
- C. Both temperature and pressure
- D. Neither pressure nor temperature

$$2H_2O(1) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

The equilibrium constant for the reaction above is  $1.0 \times 10^{-14}$  at  $25^{\circ}$  C and  $2.1 \times 10^{-14}$  at  $35^{\circ}$  C. What can be concluded from this information?

- A.  $[H_3O^+]$  decreases as the temperature is raised.
- B.  $[H_3O^+]$  is greater than  $[OH^-]$  at 35° C.
- C. Water is a stronger electrolyte at 25° C.
- D. The ionisation of water is endothermic.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

What is the equilibrium expression for the reaction above?

A. 
$$K_c = \frac{[NH_3]}{[N_2][H_2]}$$

B. 
$$K_c = \frac{2[NH_3]}{[N_2][H_2]}$$

C. 
$$K_c = \frac{2[NH_3]}{3[N_2][H_2]}$$

D. 
$$K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$$

- 27. 10 cm<sup>3</sup> of an HCl solution with a pH value of 2 was mixed with 90 cm<sup>3</sup> of water. What will be the pH of the resulting solution?
  - A. 1
  - B. 3
  - C. 5
  - D. 7

**28.**  $CH_3COOH(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$ 

In the equilibrium above, what are the two conjugate bases?

- A. CH<sub>3</sub>COOH and H<sub>2</sub>O
- B. CH<sub>3</sub>COO<sup>-</sup> and H<sub>3</sub>O<sup>+</sup>
- C. CH<sub>3</sub>COOH and H<sub>3</sub>O<sup>+</sup>
- D. CH<sub>3</sub>COO<sup>-</sup> and H<sub>2</sub>O
- **29.** Which of the following is the weakest acid in aqueous solution?
  - A.  $C_6H_5OH$
- $K_a = 1.3 \times 10^{-10}$
- B. HCN
- $K_{\rm a} = 4.9 \times 10^{-10}$
- C. H<sub>2</sub>Se
- $K_{\rm a} = 1.5 \times 10^{-4}$
- D. HF
- $K_{\rm a} = 6.9 \times 10^{-4}$
- **30.** Which salt will produce the most alkaline solution when dissolved in water?
  - A. KNO<sub>3</sub>
  - B. MgCl<sub>2</sub>
  - C. CH<sub>3</sub>CO<sub>2</sub>Na
  - D.  $NH_4 QSO_4$
- 31. In the electrolysis of molten sodium chloride, the sodium ion goes to the
  - A. positive electrode where it undergoes oxidation.
  - B. negative electrode where it undergoes oxidation.
  - C. positive electrode where it undergoes reduction.
  - D. negative electrode where it undergoes reduction.

- **32.** Which one of the following could reduce  $\operatorname{Cr}_2\operatorname{O}_7^{2-}(\operatorname{aq})$  to  $\operatorname{Cr}^{3+}(\operatorname{aq})$ ?
  - A.  $Ca^{2+}(aq)$
  - B.  $Cu^{2+}(aq)$
  - C.  $Fe^{2+}(aq)$
  - D.  $Zn^{2+}(aq)$

33. 
$$Tl^{+}(aq) + e^{-} \rightarrow Tl(s)$$
  $E^{\circ} = -0.336 \text{ V}$   $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$   $E^{\circ} = 0.339 \text{ V}$ 

The standard electrode potentials for two metals are given above. What are the equation and cell potential for the spontaneous reaction that occurs?

- A.  $Tl^{+}(aq) + Cu^{2+}(aq) \rightarrow Tl(s) + Cu(s)$   $E^{\circ} = 0.003 \text{ V}$
- B.  $2\text{Tl}(s) + \text{Cu}^{2+}(aq) \rightarrow 2\text{Tl}^{+}(aq) + \text{Cu}(s)$   $E^{\circ} = 0.675 \text{ V}$
- C.  $2\text{Tl}(s) + \text{Cu}^{2+}(aq) \rightarrow 2\text{Tl}^{+}(aq) + \text{Cu}(s)$   $E^{\circ} = 1.011 \text{ V}$
- D.  $2TI^{+}(aq) + Cu(s) \rightarrow 2TI(s) + Cu^{2+}(aq)$   $E^{\circ} = 0.333 \text{ V}$
- **34.** When molten magnesium chloride is electrolysed, how many moles of gaseous chlorine will be produced for every mole of magnesium?
  - A.  $\frac{1}{2}$
  - B. 1
  - C. 2
  - D. 4

- **35.** Which names are correct for the following isomers of  $C_6H_{14}$ ?
  - I.  $CH_3$ —CH— $CH_2$ — $CH_3$ — $CH_3$  2-methylpentane  $CH_3$

  - III.  $CH_3$  CH—CH—CH3 2,3-dimethylbutane  $CH_3$
  - A. I only
  - B. I and II only
  - C. I and III only
  - D. I, II and III

**36.** Which of the compounds below will show a single peak in its <sup>1</sup>H-NMR spectrum?

- III. CH<sub>3</sub>CH<sub>2</sub>OH
- A. I only
- B. III only
- C. I and II only
- D. I, II and III
- **37.** What is the correct order of reaction types in the following sequence?

$$\begin{matrix} I & II & III \\ C_2H_5Cl \xrightarrow{} C_2H_5OH \xrightarrow{} CH_3COOH \xrightarrow{} CH_3COOCH_3 \end{matrix}$$

I II III

- A. substitution oxidation esterification
- B. addition substitution substitution
- C. oxidation substitution addition
- D. substitution oxidation substitution
- 38. Which carbon-containing product is most likely from the reaction of C<sub>2</sub>H<sub>4</sub> and Br<sub>2</sub>?
  - A.  $C_2H_5Br$
  - B.  $C_2H_4Br_2$
  - C.  $C_2H_3Br$
  - D.  $C_2H_2Br_2$

- **39.** Which of the following is expected to be a gas at 25° C?
  - A. CH<sub>3</sub>—C—CH
  - $B. \quad CH_3 \underline{\hspace{1cm}} CH_2 \underline{\hspace{1cm}} C \underline{\hspace{1cm}} H$
  - C. CH<sub>3</sub>—O—CH<sub>2</sub>—CH<sub>3</sub>
  - D. CH<sub>3</sub>—C—OH
- **40.** Which of the compounds below is/are more likely to undergo substitution, rather than addition, reactions?
  - I. CH<sub>3</sub>CHCH<sub>2</sub>
  - II.  $CH_3$  CC1
  - III.  $C_6H_6$
  - A. I only
  - B. II only
  - C. I and III only
  - D. II and III only