

MARKSCHEME

November 2001

BIOLOGY

Standard Level

Paper 2

SECTION A

1.	(a)	electrical charge; molecular weight;		
	(b)	two (more	(or more) proteins with some charge / mass could merge to form large spots; e than one copy of some proteins could be present in a subunit;	[1 max]
	(c)	there are more types of proteins in the large subunit; proteins in large subunits show greater range in molecular mass;		
	(d)	441 (±6); 147 amino acids (±2) × 3 bases per codon;		
	(e)	more	e than one base triplet will code for an amino acid / degeneracy;	[1]
	(f)	(i)	thymine \rightarrow adenine;	[1]
		(ii)	GUA and GUG	[1]
2.	(a)	protein / histones;		[1]
	(b)	meiosis;		[1]
	(c)	(i)	6;	[1]
		(ii)	haploid because reduction divisions occurs in stage three;	[1]
		(iii)	plant because of the cell walls / no centrioles / no asters	[1]

- **3.** (a) secondary consumer;
 - (b) (Award [1] for every three new links, with arrows in the correct direction; [2 max])

 (c) the zone / portion of Earth that has life; sum of all planet's communities / ecosystems; includes life in water, in and on soil, lower atmosphere; [2 max]

SECTION B

(*Remember*, up to TWO 'quality of construction' marks per essay)

4.

phospholipid bilayer; (a) cholesterol; glycoproteins; glycolipids intrinsic protein / integral protein penetrating whole membrane / both phospholipid layers; extrinsic protein / peripheral protein penetrating one / neither phospholipid layer; [5 max] (b) phospholipid molecule has a polar end / hydrophilic end; and a nonpolar / hydrophobic end; cell membrane has phospholipid bilayer each layer has a polar / hydrophilic side and a nonpolar / hydrophobic side; because phospholipid molecules line up in same direction in each layer; inside and outside of cell membranes there is a watery fluid; polar / hydrophilic sides of bilayer must face inside and outside of membrane; to allow water to contact membrane; and push on membrane from each side; nonpolar / hydrophobic sides face each other in middle of bilayer; since hydrophobic sides are attracted to each other; the bilayer stays pushed together; results in barrier between inside and outside of membrane; since water cannot penetrate nonpolar / hydrophobic middle region; [8 max]

(c) (*N.B. for each idea, active transport must be clearly contrasted with passive transport. Do not accept unconnected statements.*)

energy required for active but not passive transport; ATP used in active but not in passive transport; active transport involves carriers but passive does not / may involve channels; active against concentration gradient but passive down it; active transport is selective whereas passive transport is (sometimes) non-selective; example of each; [5 max]

[5 max]

[8 max]

(Remember, up to TWO 'quality of construction' marks per essay)

5. (a) Lincoln index named;

based on formula where population size = $\frac{n_1 \times n_2}{n_3}$;

 n_1 = number of animals originally caught, marked and released;

 n_2 = number of animals originally caught in the second sampling;

 n_3 = number of animals originally caught in the second sampling which were marked;

accuracy depends on a bounded population;

assumes no births, deaths;

no immigration or emigration;

enough time must exist between capture and recapture for random mixing;

(b) (N.B. for each idea, exponential growth must be contrasted to the plateau phase.)

	<u>exponential growth phase</u>	<u>plateau phase</u>	
Food supply	unlimited	limited	
living space	unlimited	limited	
disease	none / little	some / much	
birth rate	maximum for species	equalled by death rate	
carrying capacity	not reached	reached	
population growth	fastest rate possible	zero population growth	[5 max]

(c) sexual reproduction produces variation in the genotypes of individual offspring; variation of genotypes can result in variation of phenotypes; populations tend to produce more offspring than the environment can support; causing competition; environments can change at any time; some individuals are adapted because of their phenotypes; will out compete other individuals less favourably adapted; enables greater survival rate for those better adapted; process called natural selection / selective advantage; increased survival can result in reproduction advantage; favouring the advancement of alleles relating to better adapted phenotypes; causes changes in gene pool over time; resulting in evolution of species;

(Remember, up to TWO 'quality of construction' marks per essay)

6. alveoli have thin walls / single cell thickness; (a) alveolar walls have moist surface area; allowing gases to dissolve / escape; moist surface contains surfactants which; prevent collapse of alveoli by surface tension; large numbers of alveoli hence high surface area; maximises exchange of gases; blood capillaries adjacent; [5 max] (b) homeostasis is maintaining a steady internal environment in an animal; body temperature is detected by thermoreceptors; located in the skin; located in the hypothalamus; a cold body can be warmed (counteracted) by different responses; vasoconstriction (of arterioles leading to skin capillaries); increased cell metabolism; shivering: a warm body can be cooled (counteracted) by different responses; vasodilation (of arterioles leading to skin capillaries); sweating where heat is lost; through heat of vaporisation; decreased cellular metabolism; [8 max] (c) exercise can lower blood pH; chemosensors / specialised neurones detect change; send impulses rapidly; to brain / central nervous system; information processed in breathing centre; impulses then relayed to diaphragm; and intercostal muscles; via peripheral nerves; to increase / decrease rate of breathing; under involuntary control; [5 max]