

MARKSCHEME

November 2001

BIOLOGY

Standard Level

Paper 2

SECTION A

1. (a) sodium chl rates of cha in both sys the rate of of of salt (out sucrose (sy increases for the rate of in the sucro		sodium chloride / salt system is faster; rates of change decrease in both systems as time passes / concentration gradients in both systems decrease with time; the rate of diffusion of sucrose (out of the bag) is slower than the rate of diffusion of salt (out of the bag); sucrose (system) continues to increase for 160 min but the NaCl / salt system only increases for 40 min; the rate of osmosis in the sodium chloride (system) is faster than the rate of osmosis in the sucrose (system):	
		Award [1] for: the graphs showing the rate of change in mass and volume for the NaCl solution follow the same pattern / the graphs showing the rate of change in mass and volume for the sucrose solution follow the same pattern	[2 max]
	(b)	Only [1] possible without units. mass: $0.11 (\pm .01) \text{ g min}^{-1} / 6.6 \text{ g hour}^{-1}$; volume: $0.17 (\pm .01) \text{ cm}^3 \text{ min}^{-1} / 10.2 \text{ cm}^3 \text{ hour}^{-1}$; Award [1] for 3 g in 30 min and 5 cm ³ in 30 min (units needed)	[2]
	(c)	osmosis / diffusion of water; movement of water from high to low water concentration / movement of water from low to high solute concentration; movement of water down the water concentration gradient; movement of water from high water potential (outside the bag) to low water potential (inside the bag);	[2 max]
	(d)	while water is still entering (at a slower rate), solute / salt / NaCl is leaving; solute (sodium chloride) has greater mass per particle than water; as rate of osmosis begins to decrease, rate of NaCl diffusion becomes more noticeable resulting in decreasing masses; water accounts for most of the volume change but both solute / NaCl and water account for the changes in mass;	[2 max]
	(e)	the higher the water concentration of the environment, the faster the vacuoles must pump to maintain equilibrium; the contractions reach zero when <i>P. caudatum</i> is isotonic to its environment; the higher the salt concentration, the lower the water concentration, so the amount of osmosis into the cell is reduced;	[1 max]
	(f)	cells would gradually swell; cells would eventually rupture / dead paramecia;	[1 max]

(a)	karyotyping	[1]
(b)	cells are grown until many of them are actively dividing; cells arrested in metaphase (using colchicine); cells are (ruptured and) stained to reveal the banding; a photograph is taken of stained chromosomes; the photograph is cut up; chromosomes are arranged in homologous pairs / in order by size, shape, banding;	[2 max]
(c)	Trisomy 21 / Down's Syndrome; female;	[2]
(a)	Award [1] for an arrow drawn from eating to low blood sugar labelled raises blood sugar; an arrow drawn from eating to low blood sugar labelled decreases / stops / reduces; an arrow drawn from eating to hunger centre of brain labelled as reduces stimulation / stops;	[1 max]
(b)	nervous system; endocrine / hormone system; respiratory system; circulatory system; excretory system; digestive system;	[2 max]
(c)	<i>To receive full marks a named example must be included.</i> reference, using a named example <i>(other than that in (a))</i> , to a set point /norm; deviation causes feedback mechanisms to take corrective measures to regain homeostasis / return system to set point / norm;	[2 max]

note: homeostasis may be referred to as either a theoretical state of being or a process executed to cause a theoretical state of "being in balance".

2.

3.

SECTION B

(*Remember*, up to TWO 'quality of construction' marks per essay)

- 4. (a) carbohydrates yield monosaccharides / reducing sugars; (do not accept glucose as a substitute for monosaccharides / reducing sugars) proteins yield amino acids; fats yield fatty acids / alkanoic acids and glycerol; [3] foods are digested mechanically in mouth and stomach; (b) foods are digested by enzymes in specific regions of the digestive tract / alimentary canal; carbohydrates are digested in the mouth (generally into disaccharides); carbohydrates are digested in the small intestine; enzymes that digest carbohydrates include ... (one should be named e.g. amylase, *maltase, ptyalin, sucrase, lactase);* proteins are partially digested in the stomach (into polypeptides); proteins are digested in the small intestine (into amino acids); enzymes that digest proteins include ... (one should be named e.g. proteases, *dipeptidase, pepsin, etc.)*; fats are digested in the small intestine; fat digestion is facilitated by bile; enzymes that digest fats include ... (one should be named e.g. lipase); [8 max]
 - At least one consequence should be explained with its connection to a balanced (c) diet in order to achieve full marks. balanced diet contains sufficient joules /calories; to obtain adequate ATP / energy for daily activities; balanced diet contains essential amino acids and fatty acids; for growth and repair / synthesis of a body's proteins, cell membranes etc.; balanced diet includes adequate minerals and vitamins; for chemical reactions and structures (strong bones and teeth, muscle contraction, nerve transmission, etc.); the amount of each nutrient required is determined by the individual (age, activity level, sex, genes, nursing or not, pregnant, etc.); deficiency diseases result when there is inadequate distribution of essential nutrients: specific example of a deficiency disease (e.g. scurvy); anorexia / bulimia / obesity are eating disorders that are types of dietary imbalance; distinction between malnutrition (inadequate distribution of nutrients) and under or over nourishment (lack of or excess of food); If vegetarian or vegan diets are included, there must be reasoning as to why these *diets are balanced / not balanced in order to gain a mark.* [7 max]

(Remember, up to TWO 'quality of construction' marks per essay)

5. (a) diagram: [4 max]

[1] for the appropriate shape;

[1] for each trophic level together with a named organism (sunlight is not a trophic level but could be included in the diagram);

explanation: [4 max]

energy pyramids show amount of energy per trophic level in the community; organisms without chlorophyll / consumers / heterotrophs eat producers / organisms with chlorophyll / autotrophs to obtain energy;

each link of a food chain loses energy of movement and heat from the chain;

only the energy retained by the molecules of the organisms at the time it is consumed can contribute to the next level of the pyramid / roughly 10 % of energy available at each trophic level is converted into new biomass in the trophic level above it;

pyramids of energy always have a normal pyramidal shape (unlike pyramids of numbers or biomass);

this pyramid assumes that the ecosystem is in balance / that no food is being transported into the system;

[8 max]

(b) energy comes from the sun / radiant energy from the sun powers ecosystems;
to make organic molecules, radiant energy is transformed by chlorophyll / photosynthesis uses radiant energy;

organic molecules are transformed by cellular respiration;

cellular respiration releases heat into the environment (lost from the ecosystem's community);

ATP is used for movement (kinetic energy) which is also (energy) lost from the ecosystem's community;

("organic molecules" can be substituted with food molecule / carbohydrate / sugar / glucose). [3

[3 max]

(c) Award [2] for each of three factors. No marks for just naming a factor. However, award [1] for a factor with a method of measurement and then award a second mark for mentioning any of the elements of the factor or any of the considerations.

Factor	Method of measurement;	Elements of factor;	Considerations;
light	light meter;	intensity / variation / day length;	placement of meter / cloud cover;
temperature	thermometer / recording thermometer;	range, variability;	placement of thermometer;
water	probes (<i>e.g.</i> pH) / pH paper / secchi disk / cobalt chloride paper;	quality / humidity / precipitation / availability / depth / speed / pH / turbidity;	variability;
wind	anemometer / wind flag / weather vane;	speed, direction;	variability - seasonal / daily;
soil	test kits;	amount of organic matter / profile / pH / nitrate / potash / phosphate levels / particle size / porosity / water content;	depth / vegetation / bedrock;
dissolved O ₂	test kit (titration) / dissolved O ₂ probe/sensor;	concentration / depth variations / correlation to other factors;	
dissolved CO ₂	test kit (titration);	concentration / depth variations / correlation to other factors;	

indication of the need for repeated measurements [1];

[7 max]

(Remember, up to TWO 'quality of construction' marks per essay)

- 6. (a) Law of Segregation states that genes occur in pairs called alleles; that alleles are separated during meiosis (I) / during gamete formation; chromosomes with alleles on them replicate and undergo meiosis; each gamete contains only one copy of each allelic pair;
 - (b) variation among members of a population / species is what allows natural selection to occur;

Darwin's argument states that more offspring are born than can survive; there is a struggle for survival *("survival of the fittest" is acceptable)*; variations within a species that promote survival will be naturally selected; variations (arise from several sources) occur due to recombination of alleles during sexual reproduction;

haploid gametes are made by meiosis during which segregation occurs; crossing-over which occurs during meiosis provides even more variations within a species;

during fertilisation haploid cells join to become diploid (normal in number); evolution is the cumulative effect of natural selection (of variants within a population);

new species arise when there has been enough selection of variations to render the population different;

[7 max]

[3]

(c) Award [1] for each of the following; an answer which mentions only advantages or only disadvantages should not receive full marks.

cloning is a reproductive process that produces offspring that have the same genes as an original;

vegetative propagation especially prevalent among plants is a cloning process; cloning among animals is less likely to occur without human manipulation;

cloning is currently used to develop successful crops;

cloning is beginning to be used to improve quality of herd animals for agricultural profit; cloning reduces variability providing consistent quality;

from a farmers' point of view, cloning is useful economically;

from a species point of view, cloning reduces stability / diversity promotes stability; variability is useful to a species in times of crisis when a variant may be able to survive the stress thus promoting survival;

cloning of animals may lead to cloning of humans which will result in many ethical problems;

greater susceptibility to certain diseases;

[8 max]