MARKSCHEME

May 2001

BIOLOGY

Standard Level

Paper 3

Option A - Diet and human nutrition

A1. (a) 70% (units not required); [1]
(b) calcium; [1]
(c) 185 to 200 g ; [1]
(d) increasing cereal / milk would increase calcium;
increasing cereal would increase iron / increasing milk does not increase iron;

A2. (a) butter / cheese / nuts / oil / cream / shortening / fatty meat;
(b) storage;
(growth of) membranes / structural;
respiration / energy source;
insulation;
myelin sheath;
hormones;
vitamins;
organ protection; [2 max]
(c) cause a rise in (blood) cholesterol / atheroma / arteriosclerosis / cardiovascular disease / circulatory disease / deposits around heart / narrowing of arteries;
high blood pressure / blood clots;
reference to uncertainties / exceptions / evidence to the contrary; obesity;

A3. (a) Joules / J / kilojoules / kJ / megajoules / MJ (do not accept 'calories')
(b) different people / children / males and females have different metabolic rates; more needed as body mass increases to maintain the body; more needed with more active occupation / energetic lifestyle (for movement); more needed by pregnant / lactating women for foetus / milk production; children require more for growth;

Option B - Physiology of exercise

B1. (a) between 3.5 and $3.6 \mathrm{~ms}^{-1}$;
(b) Group D (1500 m runners) and Group E (42 km marathon runners);
(c) aerobically, as the distance is between 1500 m and 42 km and both these groups respire aerobically
(d) both increase the amount of lactate in the blood / eventually respire anaerobically; 100 m runners increase lactate much more than marathon runner / lactate in 100 m runners starts off higher even at low speeds;
marathon runner can run at greater speed aerobically;
(could be numerical answer from data)
(e) fast / twitch fibres;
because high work rate / great strength / rapid contration contracts for only a short time / fatigues quickly / operates in anaerobic conditions;

B2. (a) appendicular;
(b) humerus, radius and ulna drawn and labelled;
cartilage on end of humerus and ulna drawn and labelled;
tendon from biceps to radius and tendon from triceps to ulna drawn and labelled;
capsule enclosing joint with space inside labelled as synovial fluid;
at least two ligaments shown crossing the joint and labelled;
biceps and triceps drawn and labelled;

B3. (a) rest to prevent aggravating / worsening of injury / allow time to heal; ice to reduce or prevent swelling / vasoconstriction;
(b) compression / taping (with bondage);
elevation;
ultrasonic treatment;
infrared treatment;
medication (e.g. anti-inflammatory);
massage / physiotherapy;

Option C - Cells and energy

C1. (a) Dark Period 1; [1]
(b) causes it to increase / oxygen release increases;
initially greater change in rate of oxygen released then levels off;;
(c) initially oxygen release in DP1 decreases and DP2 increases; both remain constant at higher level of carbon dioxide;
DP2 releases more than DP1 / DP1 uptakes more than DP2; at low carbon dioxide concentrations DP2 affected much less than DP1 (a decrease in oxygen uptake equals an increase in oxygen release)
(d) insufficient carbon dioxide for photosynthesis;
more oxygen taken in for respiration;
than released by photosynthesis;
(not 'light')

C2. (a) stabilised by hydrogen bonding;
forms α helix;
forms β pleated sheet;
amount of secondary structure affects tertiary / globular / fibrous structure;
(b) enzymes lower the activation energy;
breakdown the energy barrier;
allow the reaction to take place;

C3. outer membrane and inner membrane drawn and labelled;
cristae drawn and labelled;
matrix labelled;
ATPases / DNA / ribosomes drawn and labelled;

Option D - Evolution

D1. (a) Model III;
(b) I no real evidence;

II supported by haemoglobin types;
III supported by myoglobin types;
(Candidates may answer by first referring to biochemical evidence and then relating it to the model e.g. plasma proteins do not support any model.)
(c) C large, H small;
(d) grasping limbs / opposable thumb;
rotating forelimb;
stereoscopic vision;
nails;
upright posture
5 digits on each limb;

D2. (a) life on earth comes from space;
transmitted as spores / seeds;
delivered to earth on comets / cosmic breeze / debris falling through atmosphere;
(b) special creation / spontaneous generation / coacervates / Oparin / clay catalyst / chemical evolution;

D3. (a) bacteria show variation;
resistance is found in plasmids;
antibiotic kills most but one or more are resistant;
they reproduce and pass on resistance to offspring;
antibiotic becomes less effective in treating the infection;
(b) study of fossils;
can show how life was a long time ago;
allow comparative anatomy;
valid example (e.g. pentadactyl limb);

Option E - Neurobiology and behaviour

E1. (a) 30; [1]
(b) 7 ; [1]
(c) the more waggles, the more bees flew to the food source; [1]
(d) for both, more bees fly to the food source with more waggles;
dancing on empty cells causes more bees to fly to the food source than on capped cells;
more waggles are done on open cells;
dancing on empty cells always causes bees to fly to food source; [2]
(e) sound / echo / vibration; [1]

E2. (a) 12; [1]
(b) affects respiration / breathing / ventilation;
large inspiration stretches receptors in lung;
causes inhibition of the next inhalation;
impulse carried to brain along vagus nerve; [4]

E3. (a) occurs in all members of a species (despite variation in natural influences); behaviour that does not have to be learned / instinct;
(b) a response to a change in the environment;
those that show the behaviour survive;
pass on genes to offspring;
trial and error learning not possible;
individuals live alone / have short life time and cannot learn from others; example - taxis, kinesis, courtship, etc.;

Option F - Applied plant and animal science

F1. (a) (i) 840 hectares;
(ii) $5.6 \times 10^{6} \mathrm{~kg}$;
(b) open field rainfed had greatest area of cultivation but least production / least production per unit area;
open field irrigated has larger production per unit area than open field rainfed /
irrigation increases production;
plastic tunnels provide more production per unit area than open field / plastic tunnels increase production;
plastic tunnels provide less production per unit area than greenhouses / greenhouses increase production more than plastic tunnels;
greenhouses have the greatest production per unit area of the four methods; [4 max]

F2. (a) bad climatic conditions / drought / flooding can lower production in both;
more serious in developing country as developed have alternative supplies / can afford to import;
(b) produce cash crops;
quality of soil;
machinery;
availability of fertilisers;
technology / education;
plagues / pests / insects / herbivores;
infections by fungi / bacteria / viruses;
competition / weeds;
(need not be plant, answers may refer to livestock production)

F3. (a) transfer of pollen;
from anther to stigma;
(b)

wind pollinated:	and insect pollinated:
petals often green	brightly coloured petals;
not scented	scented;
small flowers	large flowers;
large loose anthers	anthers firmly attached (to filament);
large quantities of pollen	less pollen;
pollen smooth	pollen spiky;
feathery stigma	flat or lobed sticky stigma;
stigma outside flower	stigma inside flower;
no nectar	nectar

Option G - Ecology and conservation

G1. (a) working shown;
1100 / 616 threatened and 484 endangered;
(b) smaller sample; more difficult to observe; more species in depth of oceans / difficult to sample due to volume / size of ocean;
(c) fish;
most percentage species threatened and endangered; largest number threatened and endangered;

G2. less biomass in higher levels than lower; biomass is dry mass of living organism;
higher trophic levels obtain energy from lower trophic levels; each trophic level loses energy by respiration;
as not all mass is passed on to higher levels, must be less;

G3. (a) indicates little overlap in the two sets of data;
almost certainly a difference between the sets;
(b) prevent species becoming extinct;
species dependent on each other for habitat;
species dependent on each other for food;
not ethical to interfere with nature;
plants may have future benefits e.g. in medicine;
much as yet remains unstudied;

