MARKSCHEME

November 2000

BIOLOGY

Standard Level

Paper 3

Option A - Diet and Human Nutrition

A1. (a) higher content in all figs;
mean of 1.55 compared with 0.45 / other numerical comparison;
wherever the figs come from;
(b) needed to form bones / teeth / egg shells / used in blood clotting / muscle contraction / nerve action / enzyme activity;
(c) calcium content is higher in figs but sodium and phosphorus content are not; but other nutrient levels which might be higher aren't given;
figs from other areas might not have high calcium levels;
could be attracted by other factor(s) not mentioned (e.g. odour, smell, taste);
(d) vegans / elderly / young / post menopausal / osteoporotic / pregnant women / lactating women; vegans because many plant foods are lacking in calcium and figs contain plenty;
([1] for suggestion and [1] for reason)

A2. (a) (Accept any three protein-rich foods for [1 mark])
(Do not award the mark if only two foods are given or if any one is incorrect) (If more than three foods are given, consider only the first on each line)
(b) (Accept either any specific or general functions for [1 mark] each to [max 2 marks]) e.g. making haemoglobin; growth / repair;
(c) deamination (of amino acids);
in the liver;
nitrogen converted to / excreted as urea / nitrogenous waste;
used as a (cell) respiration substrate;

A3. (Award [1 mark] for each cause and its reason, clearly outlined, up to [3 marks max]) (Do not award marks for one word answers)
e.g. poverty can make it impossible to buy enough foods containing protein;

Option B — Physiology of Exercise

B1. (a) (i) stamina of the soleus is (much) greater;
(ii) both decrease their time of contraction / show less stamina; much greater reduction in the soleus;
(iii) extensor digitorum;
because fast muscle fibres show less stamina; because fast muscle fibres tolerate anoxia / anaerobic conditions better;
(b) Do not because:
myoglobin does not increase the time that remain contracted;
results for the mice with and without myoglobin are not significantly different / are only slightly longer without myoglobin;
(Award no marks for just saying "No, the hypothesis is not supported".)

B2. long nerve fibre / axon; nerve fibre with branches at both ends; cell body containing nucleus close to one end; myelin sheath drawn around the nerve fibre;

B3. (a) hollow shaft is almost as strong as / more flexible than a solid one; but is much lighter / allows space for bone marrow;
(b) spongy head is (almost) as strong as a solid one;
but is a better shock absorber;

Option C - Cells and energy

C1. (a) (i) positive correlation / directly proportional / as light levels rise, the rate of photosynthesis rises;
(ii) no change;
carbon dioxide is not the limiting factor;
light is the limiting factor;
(b) (i) higher rates in maize;
increasing rates in maize but plateau in rye-grass;
(ii) maize is a C_{4} plant; can utilise higher light levels / CO_{2} becomes limiting at higher light levels;

C2. (a) lack of oxygen / anaerobic conditions;
(b) anaerobic respiration / fermentation;
glycolysis;
2-oxopropanoate / pyruvate converted to ethanol;
carbon dioxide also produced;

C3. (a) $\begin{aligned} & \text { collagen / other example; } \\ & \text { (do not accept hair, meat, etc.) }\end{aligned}$
(b) inhibitor binds to (allosteric) site away from the active site;
conformation of the enzyme / active site changed;
substrate can no longer bind to the active site;

Option D - Evolution

D1. (a) (i) from Têt;
(ii) the material at Têt is more easily accessible / mimed / exploited; closer to Arago / smaller distance to transport the rock; greater quantity of quartzite in the area of Têt; quarztite might be more suitable for tool-making than chalcedony / chert;
(b) (i) cores; [1]
(ii) cores are heavier so more work carrying them over a distance; rock from Arago is good material for making cores;
(c) (i) they lack the skills necessary / brain size too small; they could not transport the tools over such large distances; apes did not live in France at that point in time; apes do not fashion stone to make tools;
(ii) Homo sapiens because of the skill levels / date;
(accept H. heidelbergensis but not H. neanderthalensis)

D2. (a) phospholipids / lipids formed by natural processes;
phospholipids naturally coalesce to form bilayers;
because of their hydrophilic heads and hydrophobic tails;
(b) catalysts (of chemical reactions);
genetic material (before DNA);
protein synthesis;

D3. all vertebrate limbs have the same basic bone structure;
despite being used for different purposes;
common ancestor and evolution of all vertebrate limbs from it;

Option E - Neurobiology and behaviour

E1. (a) (i) positive correlation / longer feeding time with greater distance;
(ii) Either:
hungrier ants are willing to travel further to find food;
hungrier ants eat more before being sated;
Or:
more resources used to travel further; more food must be obtained to make the resources use worthwhile; bigger ants can go further and eat more;
(b) (i) negative correlation / shorter feeding time with higher temperature;
(ii) ants can feed more quickly when their body is warm; sugar solutions are less viscous when they are warm; ants can run faster when they are warm so effective distances are shorter; hot feet;
low temperatures signal food storage is needed; at low temperatures need more food for respiration;
(c) sugar solution not strong enough;
nutrients other than sugar are in shorter supply;
(d) odour trails / visual displays / pheromones / touch / make vibrations;

E2. cornea shown as a convex structure at the front of the eye;
iris shown as a thin structure behind the cornea with the pupil in the centre; ciliary body shown behind the iris;

E3. (a) innate behaviour arises as a normal part of development / is due to genes;
learned behaviour is influenced by conditions / environment during development;
(b) raise young away from their parents;
if they migrate normally it is innate behaviour;
if they migrate in a different way / do not migrate it is learned behaviour;

Option F - Applied plant and animal science

F1. (a) find the total area that can be used for agriculture; multiply by average yield per unit area;
divide by average amount of food needed per human;
(b) variation in estimates becomes wider over time; more estimates per year over time;
(c) useful to plan food production / management of food resources more wisely; but so variable that little reliance can be placed on them;
devise better method of estimating the carrying capacity of the Earth;

F2. (a) disease;
herbivores / pests / use of pesticides;
genetic factors;
minerals / fertilisers / soil factors (e.g. pH);
weeds / competitors;
(b) name of crop plant;
detail of improvement;
another detail of improvement;
(accept any other crop, including cereals, apart from wheat)

F3. semen placed in vagina / female's reproductive system; high success rate because AI done at peak of oestrus; healthy offspring because only semen from tested males is used; high quality offspring because only semen from top quality males is used; semen can be stored for a long time / past the life of the male; semen can be transported more easily than the animal; one pedigree male can fertilise many more females than usual;
AI is more rapid than natural insemination;

Option G - Ecology and conservation

G1. (a) (i) S. marcescens feeds on the nutrients so more grow at high nutrient levels; [1]
(ii) C. striatum reduces the numbers by predation; [1]
(iii) D. nasutum increases the numbers because it feeds on C. striatum; which reduces the predation of S. marcescens;
(b) low population of S. marcescens at low nutrient levels;
therefore very low levels of C. striatum on which D. nasutum feeds;
not enough energy in the food chain to sustain D. nasutum;
(c) longer food chains with higher nutrient levels;

G2. (a) any named example;
factor which caused its extinction;
(do not accept endangered / threatened species)
(b) seeds are collected and stored in freezers;
viability of stored seed is regularly checked;
seed can be taken out and germinated;
plants grown from the seed can be reintroduced to the wild;

G3. (a) food / feeding activity / trophic level;
habitat / where it lives;
other valid aspect;
(b) one only;

