N14/4/BIOLO/HP3/ENG/TZ0/XX/M

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

November 2014

BIOLOGY

Higher Level

Paper 3

11 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

-2-

Option D — Evolution

1.	(a)	as nitrogen levels increase so does epidemic size / positive correlation /relationship	[1]
	(b)	increases in nitrogen means more food/phytoplankton (for <i>D. dentifera/ Daphnia</i>); more food means a bigger <i>D. dentifera/Daphnia</i> population; a bigger <i>D. dentifera/Daphnia</i> population leads to more infection (by the parasite); [2 m	nax]
	(c)	high epidemic sizes associated with higher populations of <i>D. dentifera/Daphnia</i> ; the greater the population of <i>D. dentifera/Daphnia</i> , the greater the possibility of variation/mutations in population; some of the variations may include greater resistance to the parasite; (resistant strains) have a greater chance of reproducing/produce more offspring; (leads to) selection in favour of resistant strains / death of non resistant strains; [2 m]	uax]
	(d)	the resistant strains of <i>D. dentifera/Daphnia</i> will increase; predators eating the infected <i>D. dentifera/Daphnia</i> reduce the epidemic; the resistant strains of <i>D. Daphnia</i> lose their adaptive advantage; [2 m	ax]
2.	(a)	fossils are rare / fossilization is rare; fossil record is incomplete / fossils may not be representative of the species; some parts of organisms do not fossilize / only part of organisms found; dating of fossils is only approximate / <i>OWTTE</i> ; [2 m	nax]
	(b)	the half-life is the time taken for half the parent atoms to decay to the daughter atoms / <i>OWTTE</i>	[1]
	(c)	(i) 18000(y) (allow answers in the range of 17500(y) and 18500(y))	[1]
		(ii) there is very little carbon-14 left after 50 000 years / <i>OWTTE</i>	[1]
	(d)	genetic cultural	
		concerns genetic make up/DNA/genes concerns customs/language/tools	

genetic	cultural	
concerns genetic make up/DNA/genes /physical characteristics / <i>OWTTE</i>	concerns customs/language/tools /thinking / <i>OWTTE</i> ;	
modified through natural selection/ transmitted through heredity/"nature"	modified/transmitted through learning/"nurture";	
passed to offspring	passed to kin (family)/social group/ population;	
slow change	fast change;	[2

[2 max]

Award [1] for each valid distinction between genetic and cultural evolution.

- 3 -

[6 max]

3. a cladogram is (often) a tree-like diagram; nodes/branches represent the splitting of (two) new groups (accept these from a common ancestor/ nodes represent common ancestor; marking points on a members of a clade (above a node) evolved from a common clearly annotated ancestor: diagram) members of a clade share a set of features not found in more distantly related species; classification was traditionally based on morphology; morphology is still important in cladistics for fossil species; cladistics is also based on molecular differences/base sequences/amino acid sequences; cladistics is based on probability/the Principle of Parsimony/Occam's razor; but improbable events do occur, so relationships can be wrong; cladistics allow predictions to be made; but a common ancestor may not have existed/diverging species may hybridize; classification based on cladograms often give the same result as traditional classification;

in some groups cladograms have led to revised classification;

Option E — Neurobiology and behaviour

4.	(a)	using the waggle dance / <i>OWTTE</i> ; intensity of (waggle) dance indicates the distance of the food source; the orientation of the (waggle) dance on the hive indicates the direction relative to the position of the Sun;	[2 max]
	(b)	the expression of the gene in the scouts and the non-scouts is the same	[1]
	(c)	Eaat-2	[1]
	(d)	GLT: (0.13 - 0.08 =) 0.05; OA: (0.10 - 0.08 =) 0.02;	[2]
	(e)	the expression of (neurotransmitter) genes that encourage scouting in bees vary; those bees showing scouting behaviour will find more food sources; the hive/bees will receive more food; more offspring carrying the genes/alleles for scouting will survive; the genes/alleles for scouting will increase in the population;	[3 max]
5.	(a)	Award [1] for each two correct and [1] for a correct sequence of three answers. receptor (cell) / named receptor cell; sensory neuron; relay neuron / interneuron; motor neuron; effector/appropriate example; (eg: muscle) Marks can be awarded for a clearly drawn correctly labelled diagram.	[3 max]
	(b)	Both required. aqueous humour	
			[1 max]

– 5 –

(c) endorphins block the transmission of impulses at synapses involved in pain perception [1]

kinesis	taxis		
degree of movement (in no particular direction) / <i>OWTTE</i>	displacement towards/away from a stimulus / OWTTE		
named invertebrate appropriate for the stated behaviour; (common names eg: meal worm, blow fly larva, accepted but must be precise eg: bug, maggot, insect are unacceptable)			
identify environmental condition/stimulus; (eg: light)			
identify independent and dependent variables as such;			
describe controlled variables; (eg: temperature or pH)			
appropriate apparatus providing necessary contrasting conditions;			
method to determine the <u>rate of</u> <u>movement/displacement;</u>	method to determine <u>the direction of</u> <u>movement;</u>		
repeated method/measurements / sample size considered;			
control experiment / control group;			

6.

[6 max]

Award **[5 max]** if the behaviour being investigated is wrongly identified as taxis/kinesis or the organism is not an invertebrate.

Option F — Microbes and biotechnology

7.	(a)	35 (allo	to wanswers in the range of 30 to 40)	[1]
	(b)	both the c the conc	diminish with (increased) depth; oxygen concentration shows less variation/has a clearer trend; oxygen consumption is lowest (on average) at 15 m but the oxygen centration is lowest at 28 m;	
		both	are exponential;	[2 max]
	(c)	(i)	<u>aerobic</u> respiration; chemoautotrophy; Do not accept photosynthesis.	[1 max]
		(ii)	organic matter / organic carbon / dead organic matter/detritus falling from the surface waters; mineral rich deposits available to chemoautotrophs;	[1 max]
	(d)	less cons diffe and more <i>Acce</i> <i>Do r</i>	diffusion of oxygen from water above sediments with depth/at 22 m / sumption proportional to oxygen available; erent species may have different consumption rates / swap between aerobic anaerobic respiration / <i>OWTTE</i> ; e compact sediments at 22 m so less space for microbes; <i>ept converse arguments for conditions at 2 m.</i> <i>not accept less microbes as it is oxygen consumption per cell.</i>	[2 max]

bacterial denitrification plants bacterial denitrification plants bacterial denitrification plants bacterial decomposition bacterial oxidation bacterial oxidati

	(i) <i>X</i> : Accept answer on the line between N_2 and plant protein.	[1]
	(ii) <i>Y</i> : Accept answer on the line between NO_2^- and NO_3^- .	[1]
(b)	starch (must be) first hydrolysed (to sugar/maltose) by amylase;	
	Saccharomyces/yeast then (breaks down) sugars to ethanol/ $\begin{cases} both \\ needed \end{cases}$	
	by fermentation / anaerobic cell respiration;	[2 max]
(c)	(i) catalyses the production of (single-stranded) DNA from RNA	[1]
	(ii) retrovirus / HIV / RNA virus Accept the first answer given by the candidate.	[1]
(d)	lipopolysaccharides causing fever and aches; found in walls/outer membrane of Gram-negative bacteria;	[1 max]
	methane gas is produced by methanogens/ <i>Methanococcus</i> / <i>Methanobacterium</i> ; (methanogens are) chemoautotrophs; biomass/sewage/wood pulp/manure added to the fermenter/digester; anaerobic conditions/absence of oxygen required; require warm conditions to work best/an optimum temperature of $35 ^{\circ}\text{C}$ / (methanogens) are thermophiles; optimum pH of 6.5 to 8/neutral/slightly alkaline pH needs to be maintained; methanogens need to be associated with decomposers/heterotrophic bacteria; some bacteria digest/ferment organic waste (biomass) into organic acids and alcohol; other bacteria convert organic acids/alcohol into acetate, carbon dioxide and hydrogen; (methanogens) produce methane from CO_2 and H_2 /the breakdown of acetate / $CH_3COO^-+H^+ \rightarrow CH_4 + CO_2$ or $4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$;	, ,
	the biogas produced consists of about 60 % CH_4 ;	[6 max]

8. (a)

9.

Option G — **Ecology and conservation**

(a)	48(%) (allow answer in the range of $40(%)$ to $49(%)$)	[1]
(b)	Greenland chicks are fed more <i>C. hyperboreus</i> (than the Spitzbergen chicks); Spitzbergen chicks are fed more <i>C. glacialis</i> (than Greenland chicks); more "other prey" for Greenland chicks and more <i>C. finmarchicus</i> for Spitzbergen chicks; <i>Do not accept answers quoting only numerical values from graphs without any</i>	[2 max]
(c)	other statement. 155 individuals m^{-3} (allow answers in the range of 150 to 155 individuals m^{-3})	[1]
(d)	there is very little <i>C. hyperboreus</i> so they choose to feed on the next highest energy source/C. <i>glacialis / OWTTE</i> ;	[1]
(e)	 in cold waters (off Greenland) <i>C. hyperboreus</i> is more abundant; in warmer waters (off Spitzbergen) <i>C. hyperboreus</i> is rare but <i>C. finmarchicus</i> is very abundant; <i>C. hyperboreus</i> provides more energy than <i>C. finmarchicus/C. glacialis /</i> chicks fed on <i>C. hyperboreus</i> receive more energy than those fed on <i>C. finmarchicus/C. glacialis</i>; (therefore) in cold waters chicks receive more energy in their food; (therefore) in areas where there is cold water the chicks will/should grow more quickly; 	[3 max]
(a)	captive breeding/zoos/aquariums; botanical gardens; seed banks:	[2 max]
(b)	 maximum sustainable yield is the largest yield that could be taken without harming the population size / <i>OWTTE</i>; aims to target the exponential phase of the population growth curve / half of the carrying capacity; harvesting/fishing should balance recruitment/survival/natality/birth rate; used to establish quotas/regulation; 	[2 max]
(c)	pioneer community/early stages has low diversity; as the community develops the diversity will increase; competitor community/intermediary stage has higher diversity; climax community/late stages has highest diversity;	[2 max]
<pre>valid name of species; (eg: rabbits) (accept common names) location/statement of the problem; (eg: Australia or devastation of farmland) type of release; (deliberate/controlled release/originally farmed) increases stress on the environment / upsets the food chains/webs; no natural limiting factors of the species / predators/diseases absent; alien species population increases exponentially; competes with local species for resources; valid example of affected species; method to control invader; (eg: rabbits in Australia by myxomatosis) may lead to extinction of local species / reduces species diversity; If more than one example given, mark all and annotate the example gaining the most marks. Award [3 max] if no specific example is given.</pre>		[6 max]
	 (a) (b) (c) (d) (e) (a) (b) (c) (c) 	 (a) 48 (%) (allow answer in the range of 40 (%) to 49 (%)) (b) Greenland chicks are fed more <i>C. lpaperboreus</i> (than the Spitzbergen chicks); more "other prey" for Greenland chicks and more <i>C. finmarchicus</i> for Spitzbergen chicks; <i>Do not accept answers quoting only numerical values from graphs without any other statement.</i> (c) 155 individuals m⁻³ (allow answers in the range of 150 to 155 individuals m⁻³) (d) there is very little <i>C. hyperboreus</i> so they choose to feed on the next highest energy source/<i>C. glacialis / OWTTE</i>; (e) in cold waters (off Greenland) <i>C. hyperboreus</i> is more abundant; in warmer waters (off Spitzbergen) <i>C. hyperboreus</i> is tare but <i>C. finmarchicus</i> is very abundant; (c. <i>hyperboreus</i> provides more energy than <i>C. finmarchicus/C glacialis / chicks</i> fed on <i>C. hyperboreus</i> receive more energy than those fed on <i>C. finmarchicus C. glacialis</i>; (therefore) in cold waters chicks receive more energy in their food; (therefore) in cold waters chicks receive more energy in their food; (therefore) in cold waters chicks receive more energy in their food; (therefore) in areas where there is cold water the chicks will/should grow more quickly; (a) captive breeding/zoos/aquariums; botanical gardens; seed banks; (b) maximum sustainable yield is the largest yield that could be taken without harming the population size / <i>OWTTE</i>; aims to target the exponential phase of the population growth curve / half of the carrying capacity; harvesting/fishing should balance recruitment/survival/natality/birth rate; used to establish quotas/regulation; (<i>accept common names</i>) location/statement of the problem; (<i>eg: rabbits</i>) (<i>accept common names</i>) location/statement of the problem; (<i>eg: rabbits</i>) fordalns/webs; no natural limiting factors of the species / reducts/diseases absent; alien species of release/originally farmed) increases stress on the environment / upsets the food chains/webs; no natural limiting factors of the species / red

Option H — Further human physiology

13.	(a)	platelets stick together/stick to blood vessel walls during a thrombosis; platelets release clotting factors;	[1 max]
	(b)	BMI; genetic risk; non-smokers; sex; age; other relevant factor;	[2 max]
	(c)	-34 (%) (minus required) (allow answers in the range of -32 (%) to -36 (%))	[1]
	(d)	both decrease in the period from before to during the games <i>(both needed)</i> <u>and</u> rise again afterwards; sCD62P falls and rises more than sCD40L / mean change higher for sCD62P than sCD40L; sCD40L has proportionally greater error bars/shows more variation than sCD62P;	[2 max]
	(e)	<i>hypothesis supported</i> : [2 max] three of the markers / sCD62P, sCD40L and von Willebrand factor decrease as the air pollution decreases; three of the markers/sCD62P, sCD40L and fibrinogen increased as air pollution increased after the games;	
		<i>hypothesis not supported:</i> [2 max] fibrinogen levels did not change with decreased air pollution; von Willebrand factor remained low after the games; uncertainty in the data shown by error bars; the study is not a controlled experiment / the changes could be influenced by other factors;	[3 max]

14.	(a)	<i>II.</i> (branch of) hepatic artery; <i>III.</i> (branch of) hepatic portal vein; $\begin{cases} both \ needed \end{cases}$	[1]
	(b)	CO ₂ reacts with water in red blood cells/erythrocytes to form H ⁺ and HCO ₃ ^{-/} bicarbonate/hydrogen carbonate ions; HCO ₃ ^{-/} bicarbonate/hydrogen carbonate ions diffuse/move out of red blood cells/ erythrocytes; Cl ⁻ /chloride ions diffuse/move from plasma into red blood cells/erythrocytes; <i>Do not accept mechanisms other than diffusion</i> .	
	(c)	diffusion through cell membrane of fat soluble molecules (<i>eg:</i> vitamin A)/ fatty acids/monoglycerides; absorption of lipids/triglycerides by pinocytosis/micelles binding with lipid bilayer of the cell membrane; facilitated diffusion of water/minerals/fructose through pore channels; active transport linked to (Na^+/K^+) pump protein of amino acids/glucose/ galactose/certain minerals/water soluble vitamins; endocytosis of vitamins (<i>eg:</i> vitamin B ₁₂)/hemoglobin;	
15.	 both/pepsin and trypsin are proteases/proteolytic enzymes; both/pepsin and trypsin are synthesized as inactive pro-enzymes/precursors to prever auto-digestion; both/pepsin and trypsin hydrolyse peptide bonds of proteins/peptides in food to for shorter chains of amino acids/peptides; 		
		pepsin: [3 max]	

- 11 -

pepsin is synthesized as inactive (pro-enzyme) pepsinogen; in the chief cells of (the gastric pits of) the stomach; pepsinogen is secreted into the stomach lumen (where the food is); it is transformed into active pepsin by freeing the active site; activation is brought about by HCl (and pepsin itself);

trypsin: [3 max]

trypsin is synthesized as inactive (pro-enzyme) trypsinogen; in the pancreas exocrine cells/acini; trypsinogen travels to the small intestine/duodenum lumen (where the food is); trypsinogen is activated by enteropeptidase/enterokinase (and active trypsin itself in the duodenum); [6 max]