M06/4/BIOLO/HP3/ENG/TZ1/XX/M

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MARKSCHEME

MAY 2006

BIOLOGY

Higher Level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IBCA.

Option D — **Evolution**

D1.	(a)	(i) strain 2, has the highest growth rate per day	[1]	
		(ii) strains 1 and 4 / strains 1 and 5 / strains 2 and 4 / strains 2 and 5	[1]	
	(b)	strains 4 and 5 have a higher optimal temperature than the other strain / strains 4 5 have a higher optimal temperature than 1/2/3; strains 3 and 4 have similar optimum temperatures; strain 5 has the highest optimum temperature of all strains / not below 50°C; strains 1, 2 and 3 have greatest tolerance range; strain 5 has smallest range in tolerance / strain 5 range smaller than 1/2/3/4;		
	(c)	less competition; less predation (by bacteriophages); adaptation to climate change;	[1 max]	
	(d)	with increasing spread of thermal/temperature tolerance/preference there is less competition for space / food; increased spread of thermal/temperature tolerance/preference leads to specialization / selection / isolation / niche building / speciation; with increasing thermal/temperature tolerance there is decreasing temperature range; when optimum temperature shifts to above 60°C the growth rate decreases; impact on survival rate / selected against; overspecialization may lead to extinction;	[2 max]	
D2.	(a)	sediments accumulate in layers in parts of sea/land; remains of living organism can be trapped; petrifaction / mineralization of tissues may occur; hard parts preserved best; preservation in (acid) peat; preservation in tar; preservation in resins/amber; preservation through freezing/dessication; preservation as prints and moulds / casts;	[2 max]	
	(b)	Two answers required for [1] reducing atmosphere / no free oxygen; a lot of hydrogen and ammonia; water vapour present; (carbon present as) methane; solar / high energy radiation; lightning; high temperatures; intense volcanic activity; radioactive elements present;	[1 may]	
		radioactive clements present,		

- 6 -

- D3. (a) eukaryotic cells contain mitochondria / chloroplasts; mitochondria and chloroplasts (have evolved from) independent free living organisms / bacteria / prokaryotes; these organisms were taken into (heterotrophic) cell; by endocytosis; primitive prokaryotic cell entered another as a parasite; mitochondria and chloroplasts carry out aerobic respiration and photosynthesis; for mutual/symbiotic benefit; mitochondria and chloroplasts have similar characteristics to prokaryotes;
 - (b) *explanation*: [4 max]

proteins / amino acids or nucleic acids can be used to deduce / construct phylogenies/ancestry of organisms;

differences in the amino acid sequence of a compared protein can be related to the place in the phylogeny;

DNA code is universal / protein structures are universal;

differences in the genetic code/DNA of a compared genetic code / length of DNA can be related to the place in the phylogeny;

differences accumulate over time at a constant rate;

rate can be used to determine the time since divergence;

the more similar the code/amino acid sequences the more closely related;

deficiencies: [2 max]

rate not constant over time;

protein rate obscures the rate in DNA (e.g. double point mutations at specific positions);

selection/evolutionary pressure not the same for all organisms / genes;

selection/evolutionary pressure not the same for a particular protein in a particular organism;

does not take into account the more evolved and sophisticated repair mechanisms in higher evolved organisms;

mutations may change the genetic code;

back mutations possible;

[6 max]

[4 max]

Option E — Neurobiology and Behaviour

- E1. (a) innate behaviour patterns develop independently of the environment; stereotyped responses to environmental stimuli; are controlled by genes / inherited from parents; some types of behaviour are better suited / adapted to their environment; behaviours (alleles for these) selected for; increases the survival of those organisms; leads to higher reproduction rate;
 - (b) effect of psycho-active drugs: [4 max] some psycho-active drugs act like neurotransmitters; some psycho-active drugs act like neurotransmitters but are not broken down (at the receptors); some psycho-active drugs interfere with the breaking down of the neurotransmitters; affect the transmission of optic signal in the thalamus / optical cortex;

examples **[2 max]**: amphetamines; nicotine; cocaine; cannabis; benzodiazepines; alcohol;

[6 max]

[4 max]

E2.	(a)	crab A	[1]
	(b)	$20(\pm 2)$ cm s ⁻¹ / $13(\pm 0.5)$ cm s ⁻¹ / $4(\pm 2)$ cm s ⁻¹ (units required)	[1]
	(c)	the fastest water velocity resulted in the most direct approach; the lowest water velocity resulted in the lowest hunting speed of the crabs; the fastest water velocity resulted in the least lateral movement; slowest crab has the most lateral movement; intermediate water velocity resulted in the fastest movement between any two points;	[2 max]
	(d)	nature of the river bed may influence movement; water temperature may influence the spread of the dye/movement of crab; depth of the creek may influence the spread of the dye; time of the day may influence the activity of the crabs; presence of other (unseen) predators / presence of camera will influence the behaviour of the crabs; age of crab will influence speed; size / sex of crab will influence speed; food availability; width of plume; concentration gradient;	
		dye might effect the behavior of the crab;	[2 max]
E3.	(a)	<i>I</i> : aqueous humour; <i>II</i> : fovea / yellow spot / macula lutea;	[2]
	(b)	a response to a non directional stimulus/non directional response to a stimulus	[1]
	(c)	slowing of heart rate; lowers blood pressure; constriction of the pupil; saliva production; constriction of ciliary muscle; constriction of bronchioles; increases gut movement; increases secretion of gastric juices / pancreatic juices / tears; relaxes gut sphincters; erection of penis; constriction of bladder wall:	
		relaxation of bladder sphincter;	[1 may]
		gan bladder construction,	[1 max]

Option F — **Applied Plant and Animal Science**

F1.	(a)	75% reduction / to 25% / 6 % decrease	[1]
	(b)	O_2 increases chances of survival / decreases mortality; effect decreases as surviving piglets get older;	[2]
	(c)	piglets between 1.2 and 1.6 kg had the lowest overall mortality rate; piglets with a birth weight below 1.2 kg had the highest mortality rate;	[1 max]
	(d)	over 21 day period the increase in mortality is greater for the oxygen group than for the control group; the effect of extra oxygen is greatest for the first 24 hours; extra oxygen has a positive effect on the smallest and largest birth weights; extra oxygen had a slightly negative effect on piglets between 1.2 and 1.6 kg / optimum birth weight; the positive effect of extra oxygen at birth cannot be concluded on the basis of these findings; birth weight is a better predictor for survival than extra oxygen;	[2 max]
F2.	(a)	artificial insemination; vaccination; nutrient supplement; hormone treatment; IVF treatment:	
	(b)	 (i) plant productivity is a measure of the rate at which a plant is increasing in dry (wet) mass/biomass; (rate of) increase per gram of plant; 	[1 max]
		 (ii) identify gene for ripening in tomatoes; use sense / anti-sense technology to block (over-ripening) gene / mRNA is rendered useless / mRNA cannot be expressed; lower protein concentration / ripening of the tomato is delayed / stay firm; Flavr-Savr tomatoes; 	[2 max]

F3. (a)

Insect Pollination	Wind pollination
large petals / with colors	small petals / no petals / dull coloration;
sturdy filaments (to hold anthers in a precise position)	long thin filaments (to hold the anthers loosely);
relatively small numbers of large / sticky / spiky pollens (carried by insects)	large amounts of small / smooth / light pollen (carried by the wind);
sturdy style holds the stigma in a precise position / short stigma	large/long feathery stigmas (protrude from the rest of the flower);
petals often scent and / nectaries / secrete nectar	no scent/nectar;
nectaries / secrete nectar	no nectar;

Award [1] for each correct row.

[4 max]

(b) flowering depends on day length;

there are short day and long day plants; length of night is significant (not day length) / unbroken period of "night";

there is a critical night length / minimum length of night controls the flowering process;

growers decide when they wish to produce flowers by using greenhouses in which they can control light conditions;

phytochrome exists in two interconvertible forms;

interconversion of phytochrome pigment can measure daylength;

red variety of phytochrome is inactive form;

far red is active form;

under daylight condition red is converted into far red variation;

far red slowly converts back to red in the dark (at night);

some plants are day neutral;

[3]

Option G — **Ecology and Conservation**

G1.	(a)	8 m (units required)		
	(b)	 b) as oxygen increases, egg development increases (up to 8m); as temperature increases egg development increases (up to 8m); when the temperature is 27.6 °C (± 0.2) and oxygen is 3.5 ppm (± 0.2) development is maximum; after 8 m there is a decrease in egg development despite little change in oxygen concentration / temperature; 		3 e <i>[2 max]</i>
	(c)	(i)	optimal conditions for egg development found at 8 m; distance (> 8 m) starts having a negative effect on egg development despite (near) optimum levels of oxygen and temperature; distance from the high tide line is more important than both oxygen / temperature for egg development;	[2 max]
		(ii)	wave action; predators; human interaction; tides; humidity/dessication; salinity; pollution; nature of sand;	[1 max]
G2.	(a)	members of two species that live together in a close relationship from which both benefit		[1]
	(b)	I: II:	nitrates: $/ NO_3^-$; nitrites $/ NO_2^-$;	

III. ammonia / NH₃ / ammonium/ NH4⁺ (ions);

- 12 -

G3. (a) nature reserves often need active intervention / management; degradation through human influence must be curtailed / restored/ control of human exploitation; limited access to sensitive zones; promotion of the recovery of threatened species; curtailing/stopping human intervention such as poaching; control/elimination of non-indigenous (alien) species; educating (local) community to improve understanding of existence of nature reserve / impingement on their farming; reintroduction of (locally) extinct species; buffer zones may be necessary; continued regular monitoring of (endemic) species; permits in situ conservation; legislate to protect area/ enforce protection of area using nature reserve wardens; culling of animals/ contraception should the population exceed resources/carrying capacity; [6 max] (b) amount of organic matter in the soil increases due to excretion / decay; soils structure improves as organic content rises / increasing water retention / aeration / minerals content; soil structure improves as organic content rises so does drainage of excess water;

-13-

soil erosion is reduced by binding action of roots of larger plants/erosion is increased due to roots/ burrowing/grazing animals;

amount of mineral / nutrient recycling increases;

resulting changes in the atmosphere;

increasing biomass increases recycling / decomposers, fungi and bacteria recycle; decaying plants increase soil pH;

increase oxygenation of water due to photosynthesis/ decrease water oxygen due to decay;

light intensity decreased due to leaf canopy;

[4 max]

Option H — Further Human Physiology

H1.	(a)	25 deaths per 10000 persons year ⁻¹ (<i>units required</i>)	[1]	
	(b)	increase in systolic pressure gives rise to increased death rate; increase in systolic pressure always increases the death rate / increasing diastolic pressure does not; from <120 to 159 mm Hg systolic BP as the diastolic pressure increases there is relatively little change in death rate; above 160 mm Hg systolic as associated increase in diastolic pressure does not lead to an increased death rate / irregular effect; highest death rate when systolic pressure/160/ > 160 / accompanies low diastolic pressure;		
	(c)	(i) 90/91/92 mm Hg (<i>units required</i>)	[1]	
		 (ii) the greater the difference between diastolic and systolic pressure the higher the death rate; high diastolic blood pressure (>99/>100 mmHg) combined with high systolic blood pressure (>160/>159 mm Hg) is not as detrimental as low diastolic blood pressure (<70 mm Hg) and high systolic blood pressure (>160/>159 mm Hg); diastolic blood pressure below 100 mm Hg and systolic blood pressure below 120 mm Hg little effect on the death rate; systolic value always a better indicator of risk than diastolic value; 	max]	
Н2.	(a)	peptide / protein, <i>e.g.</i> insulin, growth hormone, ADH, TRH; <i>any other example</i> .		

- 14 -

steroid *e.g.* progesterone, oestrogen, testosterone, corticosteroids; *any other example*.

tyrosine derivatives, *e.g.* thyroxin; any other example; Both type and example of hormone required for **[1]**

[1 max]

[2]

- (b) *endo*: hydrolyze/break down (peptide) bonds in polypeptide (chain at specific amino acid combinations);
 - *exo*: hydrolyze/break down (peptide) bonds at the ends of polypeptide chains; different exopeptidases needed to remove amino and carboxyl terminals;

H3. (a) erythrocytes / rupture / have a life span of about 120 days / 4 months; destroyed/phagocytosed by Kupffer cells; reticular endothelial system; hemoglobin is split into heme groups and globins/proteins; globins/proteins are hydrolyzed to amino acids; iron is removed from heme/iron stored; heme converted to biliverdin/bilirubin/bile pigments; bilirubin/bile pigment transferred to bile; amino acid deaminated; ammonia is converted to urea / carbohydrate respired; [5 max]

(b) adult hemoglobin and fetal hemoglobin have S-shaped dissociation curves;
 both fetal and adult hemoglobin have a high affinity for oxygen at high partial pressure of oxygen;

fetal hemoglobin always has a higher affinity for oxygen at corresponding partial pressures of oxygen;

fetal dissociation curve lies to the left of the adult/maternal dissociation curve; in the placenta where maternal and fetal blood come into close proximity there is a low partial pressure;

fetal hemoglobin must have a greater affinity for oxygen otherwise the maternal oxy-hemoglobin would not dissociate;

relationship between fetal and adult hemoglobin dissociation curves does NOT change;

the difference in adult and fetal hemoglobin structures lead to differences in affinity;

Response must contain statements for both adult and fetal hemoglobin, if not award [3 max]. Credit can be given for a clearly drawn and correctly labeled diagram.

[5 max]