M06/4/BIOLO/HP2/ENG/TZ2/XX/M+

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MARKSCHEME

MAY 2006

BIOLOGY

Higher Level

Paper 2

12 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

SECTION A

(a)	2.4 (± 0.1) ml O 2 g ⁻¹ h ⁻¹ (units required)	[1]	
(b)	as temperature rises oxygen consumption decreases / negative correlation / inverse proportion (from 6°C to $30-32$ °C); but fairly stable (little effect charge 21(+1)°C + (units required))	[2]	
	but fairly stable/little effect above $31(\pm 1)$ C; (units required)	[2]	
(c)	temperature below which animals' oxygen consumption increases / temperature below which animals respiration rate increases (to maintain body temperatures); temperature at which animal reaches minimal oxygen consumption / temperature above which oxygen consumption remains steady / possible increase;		
(d)	(i) sloth	[1]	
	 (ii) e.g. at 17°C has 100% of metabolic rate and at -20°C has 280(±5)% (of metabolic rate) / a change in 37°C corresponds to a change of 180(±5)% (of metabolic rate); 180÷37 = 4.9(±0.2)% (of metabolic rate) per degree of temperature change/°C⁻¹; <i>Award full marks for correct calculation of slope using other figures.</i> 	max]	
(e)	to produce heat; maintain constant body temperature; [1]	max]	
(f)	tropical mammals have a greater increase in metabolic rate as the temperature drops / arctic mammals have a (more) gradual change in metabolic rate as temperature drops; tropical mammals have a higher lower critical temperature; values for arctic mammals are extrapolated/estimated/not proven/less certain; tropical mammals are not (as well) adapted to cold temperatures / they live where little temperature change occurs; arctic mammals have more/thicker fur/more insulation to help keep warm; tropical mammals use BMR to regulate temperature more than arctic mammals;		
(g)	(i) $65.0 - 32.5 = 32.5 (\pm 0.5) \text{ mm}$ (units required)	[1]	
	 (ii) the values for thickness are only of length and not the density / number of hairs per surface area (that could be greater in the reindeer); does not include thickness of each hair (that could be greater in the reindeer) / different compositions/materials; does not include amount of air trapped in fur for insulation (that could be greater in the reindeer); different colours of hair affect absorption light energy; [1] 	max]	
	 (b) (c) (d) (e) (f) 	 (b) as temperature rises oxygen consumption decreases / negative correlation / inverse proportion (from 6°C to 30-32°C); but fairly stable/little effect above 31(±1)°C; (units required) (c) temperature below which animals' oxygen consumption increases / temperature below which animals respiration rate increases (to maintain body temperatures); temperature at which animal reaches minimal oxygen consumption / temperature above which oxygen consumption remains steady / possible increase; [1] (d) (i) sloth (ii) e.g. at 17°C has 100% of metabolic rate and at -20°C has 280(±5)% (of metabolic rate) / a change in 37°C corresponds to a change of 180(±5)% (of metabolic rate); 180+37=4.9(±0.2)% (of metabolic rate) per degree of temperature change/°C⁻¹; [2] Award full marks for correct calculation of slope using other figures. Award full marks for correct calculation of slope using other figures. (c) to produce heat; [2] (f) tropical mammals have a greater increase in metabolic rate as the temperature drops; tropical mammals have a greater increase in metabolic rate as the temperature drops; tropical mammals have a greater increase in metabolic rate as the temperature drops; tropical mammals have a metabolic rate insultation to help keep warm; tropical mammals have a more/thicker fur/more insulation to help keep warm; tropical mammals have more/thicker fur/more insulation to help keep warm; tropical mammals use BMR to regulate temperature more than arctic mammals; [3] (g) (i) 65.0-32.5=32.5(±0.5)mm (units required) (ii) the values for thickness are only of length and not the density / number of hairs per surface area (that could be greater in the reindeer); does not include thickness of each hair (that could be greater in the reindeer) / different compositions/materials; does not include amount of air trapped in fur for insulation (that could be greater in the reindeer); 	

M06/4/BIOLO/HP2/ENG/TZ2/XX/M+

(h)	(i)	beaver drops by about $1.9(\pm 0.1) \text{ W dm}^{-2}$ / from $2.05(\pm 0.05) \text{ W dm}^{-2}$ to about $0.20(\pm 0.05) \text{ W dm}^{-2}$ (units required)	[1]
	(ii)	increase in metabolic rate (to generate heat); fat insulation (to maintain heat); fast muscle movements (to generate heat); vasoconstriction/decreased blood flow to surface; <i>Accept any other reasonable suggestion.</i>	[1 max]
(i)	 (increases in) both are adaptations to maintain body temperature; mammals are homeotherms / must maintain constant body temperature; increased metabolic rate produces more energy to maintain body temperatures; thicker the fur, the greater the insulation value; animals with high fur thickness do not change BMR as quickly as animals with lower fur thickness; examples of animals with greater fur thickness and lower critical temperatures; greater fur thickness, less need for increased metabolic rate to maintain temperature / less fur thickness requires higher metabolic rate to maintain body temperature; thicker fur saves energy stores during cold temperatures when food is scarce; animals in two data sets are not identical / insufficient data; 		[3 max]

- 6 -

[3 max]

2.	(a)	(i)	use of data to give a valid argument why it is dominant; <i>e.g.</i> not (likely to be) recessive because no instance of offspring without a parent with the phenotype / if recessive, I-2, II-1 and II-8 would all need to be carriers (which is unlikely);	
		(ii)	use of data to give a valid argument why it is not sex-linked; <i>e.g.</i> males and females both affected / not X-linked because I-1 could not produce a male child with the disease;	[2 max]
	(b)	(i)	III-1: fhfh and III-2: FHfh; (or equivalent)	[1]
		(ii)	0.5/50%;	[1]
	(c)	100	% (as has FH allele) / high probability;	[1]

-7-

3. (a) Award [1] for each correct structure and its role.

(b)

(c)

	Structure	Role
I:	mitochondria	produce ATP/site of (aerobic) respiration;
II:	nucleus	contains genetic information/produces RNA / site of replication;
III:	(rough) endoplasmic reticulum	(site of) translation/protein production/protein transport;
(i)	A in nucleus / A in mitochondria	
(ii)	B in a mitochondrion	
(i)	insulin / glucagon Do not accept proteins.	
(ii)	vesicles formed at/bud off from I	·

vesicles formed a/bud off from KEK,
 product carried to Golgi apparatus (and modified there);
 vesicles carry product to plasma membrane;
 fuse with membrane;
 release product (to lumen) / exocytosis;
 ATP used / energy required;

SECTION B

Remember, up to TWO "quality of construction" marks per essay.

4. (a) sepal; petal; anther; filament; stigma; style; [4 max] ovary; Award [1] for each structure accurately drawn and correctly labeled. (b) transport: [3 max] water transported in xylem vessels; transpiration pull; due to loss of water vapour from leaves (and stems) / evaporation of water from leaves: cohesion of water molecules (due to hydrogen bonds) / continuous column of water: capillarity/adhesion; transpiration stream is flow of water within the plant; transpiration stream is flow of water from roots through the plant; abiotic factors: [3 max] (accept inverse statements) light: in day guard cells are open so increases evaporation and transport of water; temperature: higher temperatures increase evaporation and transport of water; wind: more wind, faster evaporation and increase transport; humidity: higher humidity in air decreases (rate of transpiration) and transport; CO₂ concentration: if high, stomata close and lower transpiration rate; [6 max] (c) chemiosmosis is synthesis of ATP coupled to electron transport and proton movement; photophosphorylation is the production of ATP with energy from light; light energy causes photolysis/splitting of water; electrons energized (from chlorophyll)/photoactivation; photolysis provides (replacement) electrons for those lost from excited chlorophyll; photolysis provides protons/ H^+ (for thylakoid gradient); electron transport (carriers on membrane of thylakoid;) causes pumping of protons/H⁺ across thylakoid membrane/into thylakoid space; protons/H⁺ accumulate in thylakoid space /proton gradient set up; protons/H⁺ move down concentration gradient; into stroma; flow through ATPase/synthetase; leading to ATP formation; [8 max]

(a) Award [1] for each structure accurately drawn and correctly labeled. <u>haploid</u> nucleus; (two) centrioles; cytoplasm (must show large volume relative to nucleus – suggest four to one ratio of diameter at a minimum); (first) polar cell / polar body (needs to be drawn on the outside of the cell); plasma membrane; follicle cells / corona radiata; cortical granules (need to be drawn in vicinity of plasma membrane); zona pellucida;

[4 max]

- Mitosis Meiosis one cell division two divisions / reduction division: chromosome number does not change (do not award mark for diploid converts diploid to haploid cells; cells produced as mitosis can occur *in haploid cells*) products genetically identical products genetically diverse; separation of homologous chromosomes separation of sister chromatids in in anaphase I and sister chromatids in anaphase anaphase II; crossing over in prophase I; no crossing over no formation of tetrads / no formation of tetrads / synapsis; synapsis produce cells for growth / tissue produce sexual cells / gametes for sexual repairs / asexual reproduction reproduction; two cells produced four cells produced; daughter cells with both copies of random assortment of maternal / paternal chromosomes/random assortment chromosomes (provides genetic diversity); does not occur; replication of DNA in interphase replication in interphase I; four phases: prophase, metaphase, same four phases twice; [6 max] anaphase, telophase
- (b) Award [1] for each of the following pairs up to [6 max].

5.

(c) crossing over (in prophase I); new combinations/recombination/exchange of alleles; non-disjunction / chromosomal mutation can occur creating new varieties; genetic mutations can occur creating new varieties; random alignment of homologous chromosomes at metaphase I / independent assortment; variety of chromosomes set 2ⁿ / 2²³ (in humans); random mating in population creates new genetic combinations; random fertilization of one sperm with one egg; variations allow for better chances for survival / better adaptation; more likely to survive to reproductive age; variation allows a population to survive environmental change; [8 max]

6.	(a)	Award [1] for each of the following clearly drawn and correctly labelled. relative position of atoms correctly shown; individual amino acids labeled; peptide linkage labeled correctly; NH ₂ at one end and COOH group at other / NH ₃ ⁺ and COO ⁻ ; R group coming off the alpha carbon in each amino acid;	[4 max]
	(b)	mRNA carries copy of DNA / gene; binds to ribosomes (in cytoplasm); codons of mRNA pair with anticodons / complementary base pairing of tRNA; 3' end with CCA for attaching specific amino acid; some amino acids have more than one tRNA / degeneracy; tRNA activating enzymes bind a specific amino acid to tRNA; two tRNAs bind to ribosome; one holds the growing polypeptide; amino acids bonded by peptide linkage; after peptide is transferred, one tRNA is released; ribosome shifts position; translation consists of initiation, elongation and termination; occurs in 5' to 3' direction; start <u>and</u> stop codons; polysomes / group of ribosomes may translate one mRNA at once;	[8 max]
	(c)	<pre>definition: [4 max] homeostasis maintains the internal environment at a constant level / between narrow limits; involves monitoring levels of variables; correcting change with negative feedback; variables affecting enzyme function are under homeostatic control; examples: [4 max] Award [2 max] for outlining each example of homeostatic role in enzyme function. Award marks for other suitable examples not outlined below. pH is under homeostatic control; e.g. proteases optimal activity at 1.5 / acidic pH; hunger/eating affects substrate concentration;</pre>	
		<i>e.g.</i> while eating starch, more activity of salivary amylase to digest starch; control of excess substances in storage / condensed form; <i>e.g.</i> glucose condensed to glycogen (by specific enzyme in liver); negative feedback keeps substrate/product levels within range; <i>e.g.</i> ATP inhibition of phosphofructokinase in glycolysis; temperature controlled to avoid denaturing enzymes;	[6 max]

7. (a) Award [1] for every two linkages correctly shown. Award [3 max] if fewer than eight organisms are correctly named. Deduct [1 max] for arrows in the wrong direction. Reject responses that state plant, grass, bird, insect or other broad groups of organisms. Acceptable examples maple, egret, trout, marine iguana, Biston betularia. Deduct [1 max] if organisms are unlikely to encounter one another in their habitat. Deduct [1 max] if any chain does not have a producer/ source of organic material.

[4 max]

(b) surplus amino acids are degraded to nitrogenous compounds; freshwater fish excrete/produce ammonia; toxic, but diluted by abundant water; birds fly and need to be light / little water; birds excrete uric acid; have little water and uric acid is insoluble and non-toxic; birds and mammals can live in dry habitats and need little water to excrete N-products / water conservation; mammals excrete urea; soluble in blood, (relatively) non-toxic (and excreted in the kidneys); trade-off between energy conservation and water conservation; [6 max]

(c) general statements: [3 max]

vaccinations stimulate antibody production / immunity; against/resistance to specific pathogens / artificial immunity; use either weakened pathogens or specific antibodies; primary response to first vaccination / secondary response to second vaccination; memory cells (are cloned) maintain long-term immunity;

benefits: [3 max]

eradicated some diseases *e.g.* smallpox / polio; decrease child mortality; MMR/mumps, measles and rubella prevent long-term health problems; *e.g.* deafness / blindness / heart damage from rubella / male infertility from mumps; prevent epidemics / pandemics;

dangers: [3 max]

too many vaccinations may lower body's immunity to new diseases; immunity may not be life-long / may have severe version as adults *e.g.* measles; some vaccines may cause serious side effects;

e.g. whooping cough vaccine may cause encephalitis / toxic effects (Hg) in some vaccines / allergic reactions;

may contract disease from vaccine;

Examiners are encouraged to identify where marks are being awarded from, i.e. the general statements, benefits statements or dangers statements.

[8 max]