MARKSCHEME

MAY 2006

BIOLOGY

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IBCA.

SECTION A

1. (a) $2.4(\pm 0.1) \mathrm{mlO} 2 \mathrm{~g}^{-1} \mathrm{~h}^{-1}$ (units required)
(b) as temperature rises oxygen consumption decreases / negative correlation / inverse proportion (from $6^{\circ} \mathrm{C}$ to $30-32^{\circ} \mathrm{C}$);
but fairly stable/little effect above $31(\pm 1)^{\circ} \mathrm{C}$; (units required)
(c) temperature below which animals' oxygen consumption increases / temperature below which animals respiration rate increases (to maintain body temperatures); temperature at which animal reaches minimal oxygen consumption / temperature above which oxygen consumption remains steady / possible increase;
(d) (i) sloth
(ii) e.g. at $17^{\circ} \mathrm{C}$ has 100% of metabolic rate and at $-20^{\circ} \mathrm{C}$ has $280(\pm 5) \%$ (of metabolic rate) / a change in $37^{\circ} \mathrm{C}$ corresponds to a change of $180(\pm 5) \%$ (of metabolic rate);
$180 \div 37=4.9(\pm 0.2) \%$ (of metabolic rate) per degree of temperature change $/{ }^{\circ} \mathrm{C}^{-1}$;
Award full marks for correct calculation of slope using other figures. Award [1] in case of ECF of a correct calculation with incorrect figures.
(e) to produce heat;
maintain constant body temperature;
(f) tropical mammals have a greater increase in metabolic rate as the temperature drops / arctic mammals have a (more) gradual change in metabolic rate as temperature drops; tropical mammals have a higher lower critical temperature; values for arctic mammals are extrapolated/estimated/not proven/less certain; tropical mammals are not (as well) adapted to cold temperatures / they live where little temperature change occurs; arctic mammals have more/thicker fur/more insulation to help keep warm; tropical mammals use BMR to regulate temperature more than arctic mammals;
(g) (i) $65.0-32.5=32.5(\pm 0.5) \mathrm{mm}$ (units required)
(ii) the values for thickness are only of length and not the density / number of hairs per surface area (that could be greater in the reindeer);
does not include thickness of each hair (that could be greater in the reindeer) / different compositions/materials;
does not include amount of air trapped in fur for insulation (that could be greater in the reindeer);
different colours of hair affect absorption light energy;
(h) (i) beaver drops by about $1.9(\pm 0.1) \mathrm{W} \mathrm{dm}^{-2} /$ from $2.05(\pm 0.05) \mathrm{W} \mathrm{dm}^{-2}$ to about $0.20(\pm 0.05) \mathrm{W} \mathrm{dm}^{-2}$ (units required)
(ii) increase in metabolic rate (to generate heat); fat insulation (to maintain heat); fast muscle movements (to generate heat); vasoconstriction/decreased blood flow to surface;
Accept any other reasonable suggestion.
(i) (increases in) both are adaptations to maintain body temperature; mammals are homeotherms / must maintain constant body temperature; increased metabolic rate produces more energy to maintain body temperatures; thicker the fur, the greater the insulation value;
animals with high fur thickness do not change BMR as quickly as animals with lower fur thickness;
examples of animals with greater fur thickness and lower critical temperatures; greater fur thickness, less need for increased metabolic rate to maintain temperature / less fur thickness requires higher metabolic rate to maintain body temperature; thicker fur saves energy stores during cold temperatures when food is scarce; animals in two data sets are not identical / insufficient data;
2. (a) (i) use of data to give a valid argument why it is dominant; e.g. not (likely to be) recessive because no instance of offspring without a parent with the phenotype / if recessive, I-2, II-1 and II-8 would all need to be carriers (which is unlikely);
(ii) use of data to give a valid argument why it is not sex-linked; e.g. males and females both affected / not X-linked because I-1 could not produce a male child with the disease;
(b) (i) III-1: fhfh and III-2: FHfh; (or equivalent) [1]
(ii) $0.5 / 50 \%$;
(c) 100% (as has FH allele) / high probability;
3. (a) Award [1] for each correct structure and its role.

	Structure	Role
I:	mitochondria	produce ATP/site of (aerobic) respiration;
II:	nucleus	contains genetic information/produces RNA / site of replication;
III:	(rough) endoplasmic reticulum	(site of) translation/protein production/protein transport;

(b) (i) A in nucleus / A in mitochondria
(ii) B in a mitochondrion
(c) (i) insulin / glucagon

Do not accept proteins.
(ii) vesicles formed at/bud off from RER;
product carried to Golgi apparatus (and modified there);
vesicles carry product to plasma membrane;
fuse with membrane;
release product (to lumen) / exocytosis;
ATP used / energy required;

SECTION B

Remember, up to TWO "quality of construction" marks per essay.
4. (a) sepal;
petal;
anther;
filament;
stigma;
style;
ovary;
[4 max]
Award [1] for each structure accurately drawn and correctly labeled.
(b) transport: [3 max]
water transported in xylem vessels;
transpiration pull;
due to loss of water vapour from leaves (and stems) / evaporation of water from leaves;
cohesion of water molecules (due to hydrogen bonds) / continuous column of water;
capillarity/adhesion;
transpiration stream is flow of water within the plant;
transpiration stream is flow of water from roots through the plant;
abiotic factors: [3 max] (accept inverse statements)
light: in day guard cells are open so increases evaporation and transport of water; temperature: higher temperatures increase evaporation and transport of water; wind: more wind, faster evaporation and increase transport;
humidity: higher humidity in air decreases (rate of transpiration) and transport;
CO_{2} concentration: if high, stomata close and lower transpiration rate;
[6 max]
(c) chemiosmosis is synthesis of ATP coupled to electron transport and proton movement; photophosphorylation is the production of ATP with energy from light;
light energy causes photolysis/splitting of water;
electrons energized (from chlorophyll)/photoactivation;
photolysis provides (replacement) electrons for those lost from excited chlorophyll;
photolysis provides protons $/ \mathrm{H}^{+}$(for thylakoid gradient);
electron transport (carriers on membrane of thylakoid;)
causes pumping of protons $/ \mathrm{H}^{+}$across thylakoid membrane/into thylakoid space;
protons $/ \mathrm{H}^{+}$accumulate in thylakoid space /proton gradient set up;
protons $/ \mathrm{H}^{+}$move down concentration gradient;
into stroma;
flow through ATPase/synthetase;
leading to ATP formation;
5. (a) Award [1] for each structure accurately drawn and correctly labeled.
haploid nucleus;
(two) centrioles;
cytoplasm (must show large volume relative to nucleus - suggest four to one ratio of diameter at a minimum);
(first) polar cell / polar body (needs to be drawn on the outside of the cell);
plasma membrane;
follicle cells / corona radiata;
cortical granules (need to be drawn in vicinity of plasma membrane);
zona pellucida;
[4 max]
(b) Award [1] for each of the following pairs up to [6 max].

Mitosis	Meiosis
one cell division	two divisions / reduction division;
chromosome number does not change (do not award mark for diploid cells produced as mitosis can occur in haploid cells)	converts diploid to haploid cells;
products genetically identical	products genetically diverse;
separation of sister chromatids in anaphase	separation of homologous chromosomes in anaphase I and sister chromatids in anaphase II;
no crossing over	crossing over in prophase I;
no formation of tetrads / no synapsis	formation of tetrads / synapsis;
produce cells for growth / tissue repairs / asexual reproduction	produce sexual cells / gametes for sexual reproduction;
two cells produced	four cells produced;
daughter cells with both copies of chromosomes/random assortment does not occur;	random assortment of maternal / paternal chromosomes (provides genetic diversity);
replication of DNA in interphase	replication in interphase I;
four phases: prophase, metaphase, anaphase, telophase	same four phases twice;

(c) crossing over (in prophase I);
new combinations/recombination/exchange of alleles;
non-disjunction / chromosomal mutation can occur creating new varieties;
genetic mutations can occur creating new varieties;
random alignment of homologous chromosomes at metaphase I / independent
assortment;
variety of chromosomes set $2^{n} / 2^{23}$ (in humans);
random mating in population creates new genetic combinations;
random fertilization of one sperm with one egg;
variations allow for better chances for survival / better adaptation;
more likely to survive to reproductive age;
variation allows a population to survive environmental change;
6. (a) Award [1] for each of the following clearly drawn and correctly labelled. relative position of atoms correctly shown;
individual amino acids labeled;
peptide linkage labeled correctly;
NH_{2} at one end and COOH group at other / $\mathrm{NH}_{3}{ }^{+}$and COO^{-};
R group coming off the alpha carbon in each amino acid;
[4 max]
(b) mRNA carries copy of DNA / gene;
binds to ribosomes (in cytoplasm);
codons of mRNA pair with anticodons / complementary base pairing of tRNA;
3^{\prime} end with CCA for attaching specific amino acid;
some amino acids have more than one tRNA / degeneracy;
tRNA activating enzymes bind a specific amino acid to tRNA;
two tRNAs bind to ribosome;
one holds the growing polypeptide;
amino acids bonded by peptide linkage;
after peptide is transferred, one tRNA is released;
ribosome shifts position;
translation consists of initiation, elongation and termination;
occurs in 5^{\prime} to 3^{\prime} direction;
start and stop codons;
polysomes / group of ribosomes may translate one mRNA at once;
(c) definition: [4 max]
homeostasis maintains the internal environment at a constant level / between narrow
limits;
involves monitoring levels of variables;
correcting change with negative feedback;
variables affecting enzyme function are under homeostatic control;
examples: [4 max]
Award [2 max] for outlining each example of homeostatic role in enzyme function. Award marks for other suitable examples not outlined below.
pH is under homeostatic control;
e.g. proteases optimal activity at 1.5 / acidic pH ;
hunger/eating affects substrate concentration;
e.g. while eating starch, more activity of salivary amylase to digest starch;
control of excess substances in storage / condensed form;
e.g. glucose condensed to glycogen (by specific enzyme in liver);
negative feedback keeps substrate/product levels within range;
e.g. ATP inhibition of phosphofructokinase in glycolysis;
temperature controlled to avoid denaturing enzymes;
7. (a) Award [1] for every two linkages correctly shown. Award [3 max] if fewer than eight organisms are correctly named. Deduct [1 max] for arrows in the wrong direction. Reject responses that state plant, grass, bird, insect or other broad groups of organisms. Acceptable examples maple, egret, trout, marine iguana, Biston betularia. Deduct [1 max] if organisms are unlikely to encounter one another in their habitat. Deduct [1 max] if any chain does not have a producer/ source of organic material.
[4 max]
(b) surplus amino acids are degraded to nitrogenous compounds;
freshwater fish excrete/produce ammonia;
toxic, but diluted by abundant water;
birds fly and need to be light / little water;
birds excrete uric acid;
have little water and uric acid is insoluble and non-toxic;
birds and mammals can live in dry habitats and need little water to excrete N-products / water conservation;
mammals excrete urea;
soluble in blood, (relatively) non-toxic (and excreted in the kidneys);
trade-off between energy conservation and water conservation;
[6 max]
(c) general statements: [3 max]
vaccinations stimulate antibody production / immunity;
against/resistance to specific pathogens / artificial immunity;
use either weakened pathogens or specific antibodies;
primary response to first vaccination / secondary response to second vaccination; memory cells (are cloned) maintain long-term immunity;

benefits: [3 max]

eradicated some diseases e.g. smallpox / polio;
decrease child mortality;
MMR/mumps, measles and rubella prevent long-term health problems;
e.g. deafness / blindness / heart damage from rubella / male infertility from mumps; prevent epidemics / pandemics;
dangers: [3 max]
too many vaccinations may lower body's immunity to new diseases;
immunity may not be life-long / may have severe version as adults e.g. measles; some vaccines may cause serious side effects;
e.g. whooping cough vaccine may cause encephalitis / toxic effects (Hg) in some vaccines / allergic reactions;
may contract disease from vaccine;
Examiners are encouraged to identify where marks are being awarded from, i.e. the general statements, benefits statements or dangers statements.

