MARKSCHEME

November 2001

BIOLOGY

Higher Level

Paper 3

Option D - Evolution

D1. (a) fewer males per females;
small population on island (may lead to) inbreeding / (deleterious) alleles
appearing that decrease fertility;
shortage of food / overcrowding;
better breeding sites;
(Do not accept more females)
(b) (i) mainland population has more heterozygotes as more genes polymorphic;
(ii) variation needed to respond to environmental change;
island population has less variation so more vulnerable to change;
polymorphism allows better chance that some animals could adapt /
survive;
island population cannot migrate / escape;
(c) Hardy-Weinberg equilibrium occurs if allele frequency remains constant over generations / a population is not in Hardy-Weinberg equilibrium if allele frequencies have changed over generations;
founder population is probably not at Hardy-Weinberg equilibrium;
island population is probably small and not likely to be in equilibrium / so genetic drift a factor to move from Hardy-Weinberg equilibrium;
could be at Hardy-Weinberg equilibrium because allele frequencies may not have changed / alleles are fixed;

D2. (a) (Kingdom) Animalia
(Phylum) Chordata
(Sub-phylum) Vertebrata
(Class) Mammalia
(Order) Primata
(Family) Hominidae
(Genus) Homo
(Species) sapiens
(4 to 6 correct [1], 7 to 8 correct [2]. Award [1] if 7 to 8 correct, but incorrect order.)
(b) (i) grasp / manipulation / climbing; [1]
(ii) stereo / binocular vision / depth perception;

D3. (a) ([1] for any of the following; [4 max].)
RNA (possibly) the first genetic material;
before DNA;
RNA can act as catalyst / template for its own replication;
RNA can act as catalyst for chemical reactions / act as enzymes / ribozyme; reference to ribozymes in modern ribosomes;
other experimental evidence;
(b) geographical distribution;
ring species / other evidence from geographical distribution;
biochemistry;
cytochrome c / other biochemical evidence;
fossils / palaeontological;
fossilised horse ancestors / other evidence;
homologous structures;
pentadactyl limb / vertebrate embryos / other;
recent observed evolution;
resistance to antibiotics / insecticides / heavy metal tolerance / other recent example;

Option E - Neurobiology and behaviour

E1. (a) ([1] for any of the following with both caste and role; [6 max].)
queen: reproduction;
drone / male: fertilise queen / reproduction;
workers / (sterile females): wax making;
worker / nurse: feed larvae / secrete royal jelly;
worker / forager: look for food / nectar / pollen;
worker: clean / ventilate hive;
worker / soldier: protect hive;
worker / scout: communicate location of food to rest of hive;
[6 max]
(b) ([1] for any of the following; [4 max].)

Behavioural problems:
loss of coordination / reflexes / vision;
loss of reasoning / judgement;
Health problems:
liver damage / neuron damage;
harm to fetal development / fetal alcohol syndrome;
addiction;
Social problems:
accidents in home / work / on the road;
violence in home / crime;
unemployment / financial problems;
[4 max]

E2. (a) Young fish / smolts move downstream (in May); young fish move into sea (June to August);
reproducers move from sea upstream (from June to August / winter);
[2 max]
(b) ([1] for one of the following; [2 max].)
sexual maturation / courtship / fertilization;
mature adults lay eggs / reproduce in river;
eggs fertilized / develop to smolts in river;
smolts / post-smolts mature in sea;
reproducers die during winter;
[2 max]
(c) ([1] for method and [1] for control; [2 max].)
extract substances from young smolts and put in different rivers / put live smolts in different rivers;
other rivers with no smolts (control);
and observe behaviour of reproducers in both new rivers;
OR
(any feasible experiment with control is acceptable, e.g. take smolts out of some rivers and compare movements of reproducers in rivers with smolts;)

E3. (a) (i) ([1] for example.)
e.g. (random) movement of wood lice to find a moist area;
(b) (i) ([1] for example.)
e.g. positive phototaxis / movement to light in honey bees;
(ii) [1] for detail of when the response is used;
[1] for the advantage / importance in survival;
e.g. (where chemotaxis in moths was given in (b)(i))
male moths moves towards the source of a pheromone; therefore finds a female that is ready to be mated;

Option F - Applied plant and animal science

F1. (a) control results are higher at Wakefield than Craigieburn;
much higher in 94-5 and slightly higher / similar in 95-6;
higher result in 94-5 than 95-6 in Wakefield but 95-6 higher than 94-5 in Craigieburn;
(b) support for hypothesis:
hand pollination increased fruit $\%$ (above control) at Craigieburn;
exclusion of pollinators did (significantly) reduce fruit $\%$ at Wakefield;
against the hypothesis:
hand pollination does not always increase fruit $\%$ at Wakefield;
exclusion of pollinators did not reduce fruit $\%$ at Craigieburn;
(c) ([1] for any one statement; [1 max].)
amount of pollen / ovules produced by plants;
insufficient resources / nutrients / minerals;
herbivore / parasite affecting flower development;
climate / rainfall / temperature;
genetic factors;
[1 max]

F2. (a) ([1] for any of the following; [2 max].) apical dominance is eliminated / diminished;
auxins produced in apex inhibit lateral growth;
remove auxins / apex allows lateral growth;
(b) ([1] for any one of the following; [2 max].) auxin / kinetin / cytokinin promotes root growth; low ratio kinetin / auxin promote root growth; auxins promote branch-root growth;

F3. (a) ([1] for any of the following points with an explanation; [6 max].) artificial adjustment of oestrus cycle / application of hormones / progesterone / prostaglandins / melatonin allows for timing / synchronisation of ovulation;
artificial insemination for genetic improvement / control timing / cost effective / reduce disease transmission;
in vitro fertilisation gives control over success rate;
use of cloning to reproduce identical quality animals;
vaccinations to prevent disease;
nutrition: high quality food for better health / adapted for specific needs;
medicines for treatment of diseases / prevention of transmission;
use of surrogate / foster mothers to maximise reproductive capacities; use of cesareans to protect health of mother and offspring;
[6 max]
(b) ([1] for any of the following or any other valid point; must include at least one issue of each, [4 max].)
biological issues: transfer of diseases to humans;
rejection / foreign antigens on animal organs cause antibody reaction;
function not identical to human organs;
ethical issues: wrong to use animals as organ factories for humans; use of pig organs, for example, religious issue for some cultures;

Option G - Ecology and conservation

G1. (a) ([1] for each statement; [4 max].)
(Each statement must be qualified e.g. gross production is greater in higher
temperatures than in lower temperatures)
temperatures;
rainfall;
light intensity;
light duration;
soil quality / nutrients;
density of plant population;
leaf area index;
CO_{2} concentrations in aquatic ecosystems;
[4 max]
(b) For each of three named renewable energy sources award [1 max] for an advantage and [1 max] for a disadvantage.

Renewable Energy Source	Advantage	Disadvantage
Solar	Free energy source; Inexpensive for water and home heating; Low environmental impact; Safe source;	Photocells production still expensive; Irregular source: requires storage system; Limited amount of useful energy;
Hydroelectric	Free energy source; Well developed technology; Relatively low operating and maintenance costs; High net useful energy;	Risks of dams breaking; Flooding of large areas; Destruction of ecosystems; Blocks silt movement to lower areas such as deltas; Environmental effect; Dams fill with silt;
Tides	Inexpensive; Low environmental impact on air; Moderate useful energy in selected areas with high daily tides;	Few areas with sufficient tides; Environmental impact on coastal areas;
Geothermal	Low to moderate environmental impact; Inexpensive heating for homes and industry in area;	Limited areas accessible; Requires large amount of water;
Wind	No pollution (CO_{2}, smog, etc.) / low environmental impact; Technology well developed;	Aesthetic pollution of wind farms; Not constant / insufficient in some areas; Requires storage system;
Oceans	Almost infinite supply as uses heat stored in ocean (thermal gradients); Low environmental effect;	Problem of damage by storms; Limited areas with sufficient gradient for sufficient useful energy; Requires storage / transfer of energy;

[6 max]
Accept methane (biogas from decomposition) or wood / charcoal with appropriate advantages and disadvantages

G2. (a) (i) ([1] for both.) both decrease (due to human predation);
(ii) ([1] for both.) both increase (due to lack of / decrease in predators / consumers);
(b) ([1] for each statement; [2 max].)

Concholepas is predator of Perumytilus / humans decrease Concholepas by predation;
Perumytilus population increases;
Perumytilus out competes the barnacles for food / space;
(c) ([1] for each effect; [2 max].)
wider base / more productivity / higher density macroalgae produce more food / energy;
extra trophic level / humans as 3rd trophic level;

G3. (a) (i) Bacteria / monera / Prokaryotae; producers;
(ii) by oxidising inorganic compounds (to make ATP);
(b) ([1] for one correct example of each; [2 max].) electron donors: $\mathrm{H}_{2} \mathrm{~S} / \mathrm{NH}_{3} / \mathrm{NO}_{2}^{-} / \mathrm{S}$;
electron acceptors: $\mathrm{O}_{2} / \mathrm{SO}_{4}^{2-} / \mathrm{NO}_{2}^{-} / \mathrm{NO}_{3}^{-}$;

Option H - Further human physiology

H1. (a) (i) ([1] for any one of the following.) direct / positive relationship / correlation;
(ii) ([2] for the following.)
the level rises during a lifetime;
the level is an average $30(\pm 5) \mathrm{mg}$ higher in adults / example of different values of adults and young in one state / point;
(b) ([1] for any of the below or any other valid implication, [3 max].)
most of the population is below the level of $200 \mathrm{mg} 100 \mathrm{~cm}^{-3}$;
all young people are below $200 \mathrm{mg} 100 \mathrm{~cm}^{-3}$;
few of the population / (4-5 states) are at risk of heart attacks because of high cholesterol;

H2. (a) (i) Less (available) oxygen in air / blood / decreased partial pressure of oxygen;
(ii) ([1] for any of the following; [1 max].)
nausea;
fatigue;
headache / dizziness;
difficulty in breathing;
(b) ([1] for one of the following comparisons; [2 max].)
indigenous larger lungs / pulmonary surface / larger vital capacity;
traveller faster breathing / rate of ventilation;
traveller (starts) producing more red blood cells / erythrocytes while indigenous has more;

H3. (a) ([1] for each correct statement; [4 max].)
higher (hydrostatic) pressure in blood than tissue fluid;
plasma from capillaries to tissue fluid;
plasma / interstitial / tissue fluid contains small proteins / dissolved substance / no red blood cells / no large proteins;
interstitial / tissue fluids move into lymph ducts / lymphatics;
lymph is excess tissue fluid that is not reabsorbed by capillaries;
lymph absorbs fat in small intestine / microvilli;
lymph nodes store / clone lymphocytes in immune reaction;
(b) ([1] for each of the following combinations of structure and function, or any other correct combination; [6 max].)
definition of an exocrine gland;
drawing with a labelled secretory cell;
much rough endoplasmic reticulum: high production of proteins / enzymes;
much ribosomes: high production of proteins / enzymes;
large / active golgi apparatus: processing / packaging of products of exocytosis;
formation of vesicles on golgi apparatus: transport;
formation of vesicles on plasma membrane surface: exocytosis (into duct);
large numbers of mitochondria: energy production;
high levels of mRNA production: protein formation;
high levels of amino acids: protein production;
plasma membrane opens onto duct (of gland): release of products;

