

MARKSCHEME

November 2001

BIOLOGY

Higher Level

Paper 2

14 pages

SECTION A

1.	(a)	the pheasant uses more power / energy than the duck (to fly at all speeds); the overall shape of the curves is the same; the most efficient flying velocity is the same for both birds / slightly higher for pheasants;	
		the velocity that uses the least power for flight is lower for the duck than the pheasant; <i>(Reject the duck is more efficient at using energy to fly)</i>	[3 max]
	(b)	the mass of the duck is lower than the mass of the pheasant; more energy / power needed for greater mass;	[1 max]
	(c)	pheasantORduckenergy used divided by metres travelled; (need not be stated and can be accepted if this is shown in the working)energy used divided by metres travelled; $2.6 - 2.8 \text{ Jm}^{-1}$ at V; $3.0 - 4.0 \text{ Jm}^{-1}$ at least power velocity; $3.8 - 4.0 \text{ Jm}^{-1}$ at V; $5.3 - 6.3 \text{ Jm}^{-1}$ at least power velocity; (Penalise lack of units once only. Accept $J s^{-1} m s^{-1}$ for the units.)Accept for [1] only answers in which the candidate calculates velocity divided by power	
		for V and for least power. Also accept for [1] only answers in which the candidate shows that from V to least power, velocity is reduced proportionately more than power.	[3]
	(d)	26 (flaps);	[1]
	(e)	vigorous contractions during take off and landing, less vigorous contractions during fast flight; decreasingly vigorous contractions during take off and fast flight / increasingly during landing; fewer contractions per unit time in (later stages) of fast flight than other phases; most vigorous contractions during landing; (Accept active / activity or electrical activity throughout instead of contractions)	[3 max]
	(f)	TB is used (mainly) for <u>landing;</u>	[1]
	(g)	the upstroke of the wing;	[1]
	(h)	similar frequency to the SB muscles / same number of contractions; the peaks of activity would be out of phase / alternate with those of the SB and TB;	[2]

2.

•	(a)	100 to 110 mm;	[1]
		(Penalise if no units included only if not already penalised in question 1)	
	(b)	count from lowest value upwards / highest value downwards to find the central value;	
		plot a cumulative frequency histogram and deduce the median from this;	[1 max]
	(c)	66 – 68 %;	[1]
	(d)	gives a measure of spread of the results (about the mean) / of the amount of variation; can be used to compare this data with another sample / population; indicates the reliability of a sample / used in statistical tests / significance tests;	[2 max]
	(e)	skin colour; height; mass; other possible answers; (Reject eye colour and hair length)	[2 max]
	(f)	polygenic inheritance; the interaction of two or more genes controlling the same character, each gene has a small effect on the phenotype; <i>(Reject polymorphism and multiple allele.)</i>	[2 max]

3.	(a)	in both species the codons for leucine and glycine are the same; the same triplets / codons code for the same amino acids <u>in both organisms;</u> same four nitrogenous bases used; codons consist of three bases in both;	[2 max]
	(b)	(in species I) serine is coded for by two different codons / AGC and AGU; a substitution mutation replacing C for U in the codon has no effect on the amino acid translated; the genetic code is a degenerate code / several codons translate into the same amino acid;	[2 max]
	(c)	AAG TCG CCG TCA TGT;	[1]
	(d)	(i) reverse transcriptase;	[1]
		 (ii) (host cells infected with) retroviruses / HIV; (Reject AIDS in place of HIV) 	[1]
	(e)	mRNA produced by eukaryotes is spliced before it is translated; introns are removed from the mRNA (sequence leaving exons);	[1 max]

SECTION B

(*Remember*, up to TWO 'quality of construction' marks per essay) 4. (primary structure is a) chain of amino acids / sequence of amino acids; (a) (each position is occupied by one of) 20 different amino acids; linked by peptide bonds; secondary structure formed by interaction between amino and carboxyl/ -NH and -C=O groups; (weak) hydrogen bonds are formed; (α -)helix formed / polypeptide coils up; or $(\beta$ -)pleated sheet formed; tertiary structure is the folding up of the polypeptide; stabilised by disulphide bridges / hydrogen / ionic / hydrophobic bond; quaternary structure is where several polypeptide subunits join; conjugated proteins are proteins which combine with other molecules; for example metals / nucleic acids / carbohydrates / lipids; [9 max] (b) solubility depends on what amino acids / R groups are present; smaller proteins are more soluble than big ones; proteins with many polar / hydrophilic amino acids / R groups are more soluble / soluble; proteins with polar / hydrophilic amino acids / R groups on the outside are soluble; example of a polar amino acid / group; globular proteins are more soluble than fibrous proteins; solubility of proteins may also be affected by conditions (pH, temperature, salinity); denaturation makes proteins insoluble; [4 max] proteins do not form true solutions in water but colloidal solutions; genes code for proteins / polypeptides; (c) one gene one polypeptide; (one) gene is transcribed into (one) mRNA; mRNA is translated by a ribosome to synthesise a polypeptide; if the information on a gene is changed / mutated this may alter the structure of a protein: genetic information transcribed by eukaryotes is edited before it is translated; polypeptides may be altered before they become fully functional proteins; [5 max]

- 5. (a) water is a substrate / reactant / raw material / for photosynthesis / equation for photosynthesis; water is a source of electrons; to replace those lost by chlorophyll / photosystem II; water is a source of H⁺ needed to produce NADPH + H⁺; photolysis / splitting / breaking of water; water for non-cyclic photophosphorylation / ATP production; light independent reactions occur in water; water is transparent so photosynthesis can take place underwater / light can penetrate to chloroplasts; [4 max]
 - (b) (Up to [4] from the following:)

ammonia is very soluble in water / ammonia is very toxic; ammonia is used by amphibian larvae / aquatic amphibia as their toxic waste; excretion of the ammonia is easy for an aquatic animal as it dissolves in the surrounding water;

urea is quite soluble in water / it is not as toxic as ammonia;

adult amphibians use urea as their nitrogenous waste;

necessary water can be consumed in humid habitats to flush the urea from the amphibian's body;

uric acid is insoluble so birds do not need to fly with / carry so much water to excrete it;

uric acid is insoluble so no water is needed to excrete it / it is non-toxic so it can be stored in the body;

uric acid is used by birds;

habitat of birds is terrestrial and may be dry requiring maximum water conservation;

insoluble waste product essential during development inside egg;

([1] for the following:)

the type of nitrogenous waste excreted by these animals is related to the availability of water in their habitats;

[5]

(c) (Up to [9] for the following:)

as a coolant;

thermal capacity of water is high; therefore fluids containing water can carry away much heat; the latent heat of vaporisation of water is high; water released onto the surface (sweat / saliva) carries away much heat by evaporation;

as a transport medium;

water dissolves many substances; water remains liquid over much of the range of the Earth's temperatures; as a fluid, water is used as a medium to transport biological materials; *e.g.* blood / lymph / other suitable example; water can transport heat; water currents disperse larval forms of marine species / sperm / eggs;

water as a habitat;

water is densest at 4 °C / water freezes at the surface first; water bodies are thermally stable; water is transparent / light sensitive receptors can operate under water; water has a high surface tension / some animals can walk / live on the surface film; [9 max]

- 6. (a) This may be answered by means of a series of diagrams but they must be clearly labelled and annotated. Marks should only be awarded for the points below whether shown clearly in diagrams or in prose. chromosomes condense / supercoil / become shorter and fatter; homologous chromosomes pair up (as bivalents / tetrads); there is an exchange of material between the homologous pairs / crossing over; homologous pairs of chromosomes are joined by chiasmata; pairs of homologous chromosomes become attached to the spindle fibres (Metaphase I); the homologous chromosomes are arranged across the equator of the spindle; the homologous pairs randomly orientate towards opposite poles of the spindle; spindle fibres (attached to centromeres / kinetochores) pull chromosomes of each pair to opposite poles; two nuclei form with haploid (n) set of chromosomes in each (Telophase I) (and cytoplasm divides); short interphase with no replication of the chromosomes; chromosomes stay condensed and new spindles form (Prophase II); chromosomes align across the equator (Metaphase II); centromeres divide and chromatids separate (Anaphase II); two new nuclei form (Telophase II) and the cytoplasm divides; four haploid (n) cells produced; (Reject four haploid gametes produced) [9 max] mitosis multiplies the germ cells to produce oogonia; (b)
 - (b) Initiosis multiplies the germ cells to produce obgonia, cell volume increased / cell grows (after mitosis) (oogonium to primary oocyte); meiosis; unequal division of cytoplasm during meiotic divisions; small polar bodies formed and break down *(accept three polar bodies formed)*; one haploid egg formed per meiosis; oogenesis begins in the fetal ovary of the girl and it is only totally completed at fertilisation; *[5 max]*
 - (c) more germ cells in testes than ovary / more germinal epithelium; all four products of meiosis become sperm versus one only becoming an egg; continuous sperm production versus monthly egg production; early stages of oogenesis only in the fetus so finite number of cells for oogenesis; reference to progesterone inhibiting FSH secretion and thus egg production; no eggs produced during pregnancy; eggs not produced after menopause;

7. (a) ([9] for the following:)

bryophytes small plants; no true stems or leaves; rhizoids only; dominant plant is haploid / is the gametophyte; spores produced in a capsule; non-vascular / lack of xylem and phloem;

filicinophytes seedless; vascular tissues / xylem and phloem; roots; leaves and stems; spores produced in clusters / spores usually produced under the leaves; prothallus / small gametophte / gametophyte grows independently;

coniferophyta seeds not enclosed in ovary / pericarp / fruit; pollen and ovules; cones; often have narrow leaves / thick waxy cuticle; vascular tissue / xylem and phloem;

angiospermophytes flowers / flowering plants; ovules / seed are enclosed; fruits; xylem vessels;

[9 max]

(b) ([6 max] from the following:)

water needed; water causes swelling which bursts the testa / seed coat / water softens the testa / seed coat; water mobilises soluble food reserves / enzymes / medium for metabolic processes; water rehydrates cells / tissues; water transports hydrolysed food reserves; water transports growth promoters / hormones; water dilutes / washes out growth inhibitors;

oxygen needed; oxygen required for (aerobic) respiration; which provides ATP for metabolic activity;

warmth increases enzyme activity *(reject enzymes denatured)*; fire breaks down inhibitors; chilling breaks down inhibitors; light breaks down inhibitors / stimulates germination in some species; degradation of testa makes it more permeable to water / gases;

[6 max]

(c) ([3 max] for the following:)

all wild plants should be conserved; trees should be conserved as sinks of carbon dioxide / habitats for animals; wild species which may have commercial value (*e.g.* pharmaceuticals); wild relatives of domesticated plants / crop plants / *e.g.* of crop plant that should be conserved; as they carry useful genes / characteristics for breeding programmes; species of plants which are endangered / threatened; species upon which endangered animals depend;

[3 max]