MARKSCHEME

November 2001

BIOLOGY

Higher Level

Paper 2

SECTION A

1. (a) the pheasant uses more power / energy than the duck (to fly at all speeds);
the overall shape of the curves is the same;
the most efficient flying velocity is the same for both birds / slightly higher for pheasants;
the velocity that uses the least power for flight is lower for the duck than the pheasant; (Reject the duck is more efficient at using energy to fly)
[3 max]
(b) the mass of the duck is lower than the mass of the pheasant; more energy / power needed for greater mass;
(c) pheasant
energy used divided by metres travelled; (need not be stated and can be accepted if this is shown in the working)

OR duck
energy used divided by metres travelled; $2.6-2.8 \mathrm{Jm}^{-1}$ at V ;
$3.0-4.0 \mathrm{~J} \mathrm{~m}^{-1}$ at least power velocity;
$3.8-4.0 \mathrm{Jm}^{-1}$ at V ;
$5.3-6.3 \mathrm{~J} \mathrm{~m}^{-1}$ at least power velocity;
(Penalise lack of units once only. Accept $J s^{-1} \mathrm{~ms}^{-1}$ for the units.)
Accept for [1] only answers in which the candidate calculates velocity divided by power for V and for least power. Also accept for [1] only answers in which the candidate shows that from V to least power, velocity is reduced proportionately more than power.
(d) 26 (flaps);
(e) vigorous contractions during take off and landing, less vigorous contractions during fast flight;
decreasingly vigorous contractions during take off and fast flight / increasingly during landing;
fewer contractions per unit time in (later stages) of fast flight than other phases;
most vigorous contractions during landing;
(Accept active / activity or electrical activity throughout instead of contractions)
(f) TB is used (mainly) for landing; [1]
(g) the upstroke of the wing;
(h) similar frequency to the SB muscles / same number of contractions; the peaks of activity would be out of phase / alternate with those of the SB and TB;
2. (a) 100 to 110 mm ;
(Penalise if no units included only if not already penalised in question 1)
(b) count from lowest value upwards / highest value downwards to find the central value;
plot a cumulative frequency histogram and deduce the median from this;
(c) $66-68 \%$;
(d) gives a measure of spread of the results (about the mean) / of the amount of variation;
can be used to compare this data with another sample / population; indicates the reliability of a sample / used in statistical tests / significance tests;
(e) skin colour; height; mass; other possible answers;
(Reject eye colour and hair length)
(f) polygenic inheritance;
the interaction of two or more genes controlling the same character; each gene has a small effect on the phenotype;
[2 max]
(Reject polymorphism and multiple allele.)
3. (a) in both species the codons for leucine and glycine are the same; the same triplets / codons code for the same amino acids in both organisms; same four nitrogenous bases used;
codons consist of three bases in both;
(b) (in species I) serine is coded for by two different codons / AGC and AGU; a substitution mutation replacing C for U in the codon has no effect on the amino acid translated;
the genetic code is a degenerate code / several codons translate into the same amino acid;

(c) AAG TCG CCG TCA TGT;

(d) (i) reverse transcriptase;
(ii) (host cells infected with) retroviruses / HIV; (Reject AIDS in place of HIV)
(e) mRNA produced by eukaryotes is spliced before it is translated; introns are removed from the mRNA (sequence leaving exons);

SECTION B

(Remember, up to TWO 'quality of construction' marks per essay)
4. (a) (primary structure is a) chain of amino acids / sequence of amino acids; (each position is occupied by one of) 20 different amino acids;
linked by peptide bonds;
secondary structure formed by interaction between amino and carboxyl/
-NH and $-\mathrm{C}=\mathrm{O}$ groups;
(weak) hydrogen bonds are formed;
(α-)helix formed / polypeptide coils up;
or (β-)pleated sheet formed;
tertiary structure is the folding up of the polypeptide;
stabilised by disulphide bridges / hydrogen / ionic / hydrophobic bond; quaternary structure is where several polypeptide subunits join;
conjugated proteins are proteins which combine with other molecules;
for example metals / nucleic acids / carbohydrates / lipids;
(b) solubility depends on what amino acids / R groups are present;
smaller proteins are more soluble than big ones;
proteins with many polar / hydrophilic amino acids / R groups are more soluble /
soluble;
proteins with polar / hydrophilic amino acids / R groups on the outside are soluble;
example of a polar amino acid / group;
globular proteins are more soluble than fibrous proteins;
solubility of proteins may also be affected by conditions (pH , temperature, salinity);
denaturation makes proteins insoluble;
proteins do not form true solutions in water but colloidal solutions;
[4 max]
(c) genes code for proteins / polypeptides;
one gene one polypeptide;
(one) gene is transcribed into (one) mRNA;
mRNA is translated by a ribosome to synthesise a polypeptide;
if the information on a gene is changed / mutated this may alter the structure of a protein;
genetic information transcribed by eukaryotes is edited before it is translated; polypeptides may be altered before they become fully functional proteins;
(Remember, up to TWO 'quality of construction' marks per essay)
5. (a) water is a substrate / reactant / raw material / for photosynthesis / equation for photosynthesis;
water is a source of electrons;
to replace those lost by chlorophyll / photosystem II;
water is a source of H^{+}needed to produce NADPH $+\mathrm{H}^{+}$;
photolysis / splitting / breaking of water;
water for non-cyclic photophosphorylation / ATP production;
light independent reactions occur in water;
water is transparent so photosynthesis can take place underwater / light can penetrate to chloroplasts;
(b) (Up to [4] from the following:)
ammonia is very soluble in water / ammonia is very toxic;
ammonia is used by amphibian larvae / aquatic amphibia as their toxic waste;
excretion of the ammonia is easy for an aquatic animal as it dissolves in the surrounding water;
urea is quite soluble in water / it is not as toxic as ammonia;
adult amphibians use urea as their nitrogenous waste;
necessary water can be consumed in humid habitats to flush the urea from the amphibian's body;
uric acid is insoluble so birds do not need to fly with / carry so much water to excrete it;
uric acid is insoluble so no water is needed to excrete it / it is non-toxic so it can be stored in the body;
uric acid is used by birds;
habitat of birds is terrestrial and may be dry requiring maximum water conservation;
insoluble waste product essential during development inside egg;
([1] for the following:)
the type of nitrogenous waste excreted by these animals is related to the availability of water in their habitats;
(Remember, up to TWO 'quality of construction' marks per essay)
(c) (Up to [9] for the following:)
as a coolant;
thermal capacity of water is high;
therefore fluids containing water can carry away much heat;
the latent heat of vaporisation of water is high;
water released onto the surface (sweat / saliva) carries away much heat by evaporation;
as a transport medium;
water dissolves many substances;
water remains liquid over much of the range of the Earth's temperatures;
as a fluid, water is used as a medium to transport biological materials;
e.g. blood / lymph / other suitable example;
water can transport heat;
water currents disperse larval forms of marine species / sperm / eggs;
water as a habitat;
water is densest at $4{ }^{\circ} \mathrm{C}$ / water freezes at the surface first;
water bodies are thermally stable;
water is transparent / light sensitive receptors can operate under water; water has a high surface tension / some animals can walk / live on the surface film;
(Remember, up to TWO 'quality of construction' marks per essay)
6. (a) This may be answered by means of a series of diagrams but they must be clearly labelled and annotated. Marks should only be awarded for the points below whether shown clearly in diagrams or in prose.
chromosomes condense / supercoil / become shorter and fatter;
homologous chromosomes pair up (as bivalents / tetrads);
there is an exchange of material between the homologous pairs / crossing over; homologous pairs of chromosomes are joined by chiasmata; pairs of homologous chromosomes become attached to the spindle fibres (Metaphase I); the homologous chromosomes are arranged across the equator of the spindle; the homologous pairs randomly orientate towards opposite poles of the spindle; spindle fibres (attached to centromeres / kinetochores) pull chromosomes of each pair to opposite poles;
two nuclei form with haploid (n) set of chromosomes in each (Telophase I) (and cytoplasm divides);
short interphase with no replication of the chromosomes; chromosomes stay condensed and new spindles form (Prophase II);
chromosomes align across the equator (Metaphase II);
centromeres divide and chromatids separate (Anaphase II);
two new nuclei form (Telophase II) and the cytoplasm divides;
four haploid (n) cells produced;
(Reject four haploid gametes produced)
(b) mitosis multiplies the germ cells to produce oogonia;
cell volume increased / cell grows (after mitosis) (oogonium to primary oocyte); meiosis;
unequal division of cytoplasm during meiotic divisions;
small polar bodies formed and break down (accept three polar bodies formed); one haploid egg formed per meiosis;
oogenesis begins in the fetal ovary of the girl and it is only totally completed at fertilisation;
(c) more germ cells in testes than ovary / more germinal epithelium;
all four products of meiosis become sperm versus one only becoming an egg, continuous sperm production versus monthly egg production; early stages of oogenesis only in the fetus so finite number of cells for oogenesis; reference to progesterone inhibiting FSH secretion and thus egg production; no eggs produced during pregnancy; eggs not produced after menopause;
[9 max]
[4 max]
(Remember, up to TWO 'quality of construction' marks per essay)
7. (a) ([9] for the following:)
bryophytes
small plants;
no true stems or leaves;
rhizoids only;
dominant plant is haploid / is the gametophyte;
spores produced in a capsule;
non-vascular / lack of xylem and phloem;
filicinophytes
seedless;
vascular tissues / xylem and phloem;
roots;
leaves and stems;
spores produced in clusters / spores usually produced under the leaves;
prothallus / small gametophte / gametophyte grows independently;
coniferophyta
seeds not enclosed in ovary / pericarp / fruit;
pollen and ovules;
cones;
often have narrow leaves / thick waxy cuticle;
vascular tissue / xylem and phloem;
angiospermophytes
flowers / flowering plants;
ovules / seed are enclosed;
fruits;
xylem vessels; [9 max]
(b) ([6 max] from the following:)
water needed;
water causes swelling which bursts the testa / seed coat / water softens the testa / seed coat;
water mobilises soluble food reserves / enzymes / medium for metabolic processes;
water rehydrates cells / tissues;
water transports hydrolysed food reserves;
water transports growth promoters / hormones;
water dilutes / washes out growth inhibitors;
oxygen needed;
oxygen required for (aerobic) respiration;
which provides ATP for metabolic activity;
warmth increases enzyme activity (reject enzymes denatured);
fire breaks down inhibitors;
chilling breaks down inhibitors;
light breaks down inhibitors / stimulates germination in some species;
degradation of testa makes it more permeable to water / gases;
(c) ([3 max] for the following:)
all wild plants should be conserved;
trees should be conserved as sinks of carbon dioxide / habitats for animals;
wild species which may have commercial value (e.g. pharmaceuticals);
wild relatives of domesticated plants / crop plants / e.g. of crop plant that should be conserved;
as they carry useful genes / characteristics for breeding programmes;
species of plants which are endangered / threatened;
species upon which endangered animals depend;

