

MARKSCHEME

May 2001

BIOLOGY

Higher Level

Paper 3

14 pages

Option D – Evolution

D1.	(a)	$10.9 \pm 0.1 \text{ cm} / 4.33 \pm 0.08$ inches (do not award the mark if size units are not given);	[1 max]
	(b)	Similarity: both have jagged edges / rough edges / bits chopped off; both about hand size (or slightly larger); both have more rounded ends for holding;	
		Difference: Oldowan are (slightly) shorter; Oldowan have a smooth unchipped end; Acheulian are more pointed; Acheulian have a bigger cutting edge / more carefully worked;	[2 max]
	(c)	(i) Acheulian because they appear more sophisticated / developed / finely worked; <i>(Award no marks just for 'Acheulian'.)</i>	[1 max]
		 (ii) Homo erectus because they required more skill / intelligence to make / more complex brain; (Award no marks just for 'Homo erectus' and no marks for arguing that Homo erectus was 'bigger brained', 'more evolved' or 'more recent'.) 	[1 max]
	(d)	cultural (do not accept 'non-genetic');	[1 max]
D2.	(a)	long periods where there was no (apparent) change / stasis; short periods of rapid evolution; periods of mass extinctions leading to opportunities / caused by environmental disruption / rapid environmental change in short periods; supported by lack of fossils showing gradual changes; an example of such environmental disruption (meteors, earthquakes, volcanoes, <i>etc.</i>); alternative theory is gradualism; punctuated equilibrium is based on fossil evidence rather than biochemical evidence;	
	(b)	Herring gull – lesser black-backed gull / reindeer-caribou / plethodontid salamanders – California / great tit (in Eurasia); (Check authenticity of other answers where possible – www.cs.colorado.edu	_ [1 max]

has useful information.)

- **D3.** (a) black variety of moth arose as a result of a mutation (in the light form); called (balanced / transient) polymorphism; black form caused by a dominant allele / frequency of black allele increases or decreases quickly (with environmental change); black caused by production of melanin; industrial pollution caused death of lichens on trees and rocks; many buildings, rocks and trees became (about 150 years ago) blackened (by soot); melanic variety became better camouflaged than light form / light form was originally better camouflaged; resulted in less predation by birds; black variety increased at the expense of the light variety / selection advantage; as pollution decreased the lichens recovered and conditions favoured the light form; [6 max] light variety increased at the expense of the dark variety; (b)
 - proposed by Lamark;

no real substantial evidence;

example: if tail cut off rat - offspring still have tails;

relies on phenotypic inheritance not genotypic inheritance / somatic changes cannot be passed on / changes had to occur in sex cells, not the somatic cells;

cannot be repeated experimentally since very many generations would be necessary;

also mutations would have to be eliminated in such an experiment – impossible; [4 max]

Option E – Neurobiology and behaviour

E1.	(a)	(Note US names for transmitters, e.g. norepinephrine for noradrenaline.)		
		pre-synaptic neurons are excitatory or inhibitory;		
		cholinergic neurons release acetylcholine;		
		found in neuromuscular junctions / most synapses in voluntary NS / many synapses		
		in autonomic NS;		
		adrenergic neurons release noradrenaline;		
		found in sympathetic synapses (of ANS);		
		both types of neuron can be excitatory;		
		attach to postsynaptic receptors;		
		make membrane permeable to Na^+ which moves through / into / across postsynapti membrane;	с	
		causes depolarisation;		
		monoamine oxidase 'destroys' noradrenaline and acetylcholine esterase		
		'destroys' acetylcholine;		
		other excitatory transmitters in brain – serotonin / dopamine / glutamic acid;		
		inhibitory neurons release transmitters that make postsynaptic membrane less permet to Na ⁺ ;	able	
		cause hyperpolarisation of the membrane;		
		by allowing K^+ to diffuse out of postsynaptic membrane;		
		examples include glycine / gamma-aminobutyric acid / acetylcholine;	[7 max]	
	(b)	light received by retinal cells / neurons / bipolar neurons / photoreceptor;		
		passed to optic nerve / cranial nerve II;		
		to visual cortex / relay neurons / internuncial neurons / intermediary neurons;		
		out via motor neurons / cranial nerve III / effector neurons / oculomotor nerve;		
		sympathetic neurons cause radial muscles to contract / pupil to enlarge;		
		parasympathetic neurons cause circular muscles to contract / pupil to reduce;	[3 max]	

E2.	(a)	Group A because both (large and small) crabs have the opportunity to gain (from exchanging shells); [1]	max]
	(b)	(i) the greater the relative difference (in mass) the more knocks per fight; [1]	max]
		 (ii) the smaller crab could hide more easily in the large shell and so require more knocks; there is greater motivation for the larger crab to keep trying to get the smaller one out; 	max]
	(c)	relative mass difference; time each fight took; difference in strength of each crab; difference in the sorts of shell occupied by the crabs; whether the 'point' represented Group A or Group B; [2]	max]
	(d)	the advantage to be gained was low; weaker crabs and so could only knock a few times; [1]	max]
E3.	(a)	(type of learning) where young form an attachment / association to an object / parent shortly after birth; [1 n	max]
	(b)	investigated by (Konrad) Lorenz; used (greylag) goose <i>(awarded if some indication of an imprinting experiment is given)</i> ; divided eggs into two batches / groups (A) on hatching saw mother first, group (B) on hatching saw Lorenz first; group (A) goslings always followed mother, group (B) goslings always followed Lorenz;	max]

Option F – Applied plant and animal science

F1.	(a)		mall to support many fleas / too young to have acquired many fleas; of produce reproductive hormones;	[1 max]
	(b)		e females have the greatest number of fleas; fleas in winter than summer;	
			s have fewer fleas than females;	[2 max]
	(c)	rabbi youn males	ypothesis is supported; ts in the 80 % sterile females group had fewer fleas; g in the 80 % sterile females group had fewer fleas; s in the 80 % sterile females group had fewer fleas; s testing to find out if it is statistically significant;	[3 max]
F2.	(a)	(i)	the ratio between the total area of leaves of a plant and the area of soil available to it;	[1 max]
		(ii)	the (dry) mass of (part of) a plant that has commercial value;	[1 max]
	(b)	addeo addeo exam	to prevent infection of sperm used for artificial insemination; d to feed to promote feed conversion; d to feed to prevent certain diseases; ple of such a disease – mastitis;	
		can le	ead to development of resistant strains (that may also infect people);	[2 max]

F3. raise levels of carbon dioxide in the atmosphere thereby increasing carbon fixation / (a) photosynthesis; raise temperature (where appropriate) to increase rates of carbon fixation / photosynthesis / reduce temperature fluctuations; ensure sufficient levels of water are available; control fertilisation / pollination; decrease rates of infection / pests; decrease competition from weeds; can administer locally exact amounts of inorganic nutrients; control light conditions; [4 max] (b) (Award no more than [4] for responses all in favour or all against.) killing animals is wrong / killing causes pain and suffering in animals; eggs from animals involve killing embryos (sometimes); milk does not involve killing directly but cows must be made pregnant to get milk (- bull calves are killed); religious reasons for not eating such products; animals kept in captivity can suffer cruelties / normal behaviour of animals kept in captivity is prevented; catching fish involves slow death of fish by suffocation;

but it keeps people in employment;

it is natural to eat animals and so it is OK;

religious reasons to eat such products;

some nutrients are necessary for children to grow and certain animal products are rich in them;

fishing causes incidental death of other animals / animal farming causes incidental extermination of other species;

certain cultures are traditionally reliant on animals as their only food source (*e.g.* Masai and Netsilic);

[6 max]

Option G – Ecology and conservation

- indicator species are key organisms that can indicate the (abiotic) characteristics of **G1.** (a) an environment; disappearance or appearance of an indicator species in a community signals environmental change; example of indicator organism; biotic index is relative or absolute scale of numbers / species; species chosen for different tolerance levels; example of biotic index and its use (e.g. water invertebrates and water pollution, lichen for air pollution, foraminifers for climatic change) (N.B. do not allow Simpson's Index); uses the presence or absence of indicator species; uses the numbers of different species / diversity / species richness; ecosystems under stress / polluted ecosystems have reduced diversity; gender ratios / malformations of some species (e.g. amphibians) can indicate presence of toxic products; these methods can be rapid but not precise; they can be used to detect rapid changes; [7 max] but generally used to detect gradual changes / changes over time; (Other legitimate answers are acceptable. The factor must be accompanied by a correct (b) statement; a list of factors alone is not acceptable.)
 - statement; a list of factors alone is not acceptable.) temperature; water / freshwater / sea water / salinity / pH of water; breeding sites / territory; food supply; [3 max]

G2.	(a)	Savanna;	[1 max]
	(b)	Desert;	[1 max]
	(c)	precipitation / rainfall since even at high temperatures where precipitation / rainfall is low productivity is low; example: prairie / steppe or prairie / steppe versus tropical rainforest; even when temperature low productivity can be relatively high; example: temperate forest versus savannah;	[2 max]
	(d)	the higher the precipitation the more forest; generally high precipitation is needed when the temperature is high / or reverse point; forest is not found when the precipitation is very low (– whatever the temperature); forest formation needs a mean annual temperature > -5 to 2 °C; forest formation needs a mean annual rainfall $>$ about 250 mm.	[2 max]
G3.	(a)	very low concentrations / no oxygen / anaerobic conditions; suitable humid conditions; suitable temperatures to enable sufficient metabolism; appropriate organic food source; example: animal waste, plant material, organic acids; <i>Methanococcus / Methanobacterium / Methanosarcina / Methanospirillum;</i> (<i>Reject 'suitable bacteria or bacteria or suitable organisms' – must be named</i> <i>species.</i>)	[3 max]
	(b)	organic material \rightarrow methanol + formic acid + carbon dioxide + hydrogen; glucose \rightarrow methane + carbon dioxide $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$; $CH_3CH_2OH + H_2O \rightarrow CH_3COOH + 2H_2$; $CO_2 + 3H_2 \rightarrow CH_4 + 2H_2O$;	
		(accept word equations)	[1 max]

[1 max]

[1 max]

[2 max]

[2 max]

[3 max]

[1 max]

H1.	(a)	(i) $7.3 \pm 0.3 \text{ MJ m}^{-2} \text{ h}^{-1}$;
		(ii) cool;
	(b)	(Award [2] for a correct answer or correct calculation; deduct [1] if units incorrect.) $1.8 \pm 0.2 \text{ MJ}$; (Do not award unit mark if $MJ \text{ m}^{-2}$ or $MJ \text{ h}^{-1}$ or $MJ \text{ m}^{-2} \text{ h}^{-1}$ are stated.)
	(c)	<i>accept either:</i> the higher the temperature the less the effects of wind speed; the lower the temperature the greater the effects of wind speed;
		<i>or</i> : the higher the wind speed the greater the effect of temperature; the lower the wind speed the lower the effect of temperature; the effect of raising/lowering wind speed on wind chill is the inverse of the effect of raising/lowering temperature on wind chill.
H2.	(a)	lipid-soluble vitamins / A, D, E and K / retinol, calciferol, α -tocopherol, phylloquinone (accept one of the four vitamins listed); carbohydrate / glycogen; vitamins B ₁₂ (cyanocobalamin) and folic acid; iron (attached to protein / transferrin); potassium and several trace elements as ions;
	(b)	negative feedback;

(b) negative feedback; (*Reject 'feedback' on its own.*)

H3. (a) (in the mouth) salivary amylase breaks down starch into (polysaccharides and) maltose; process called hydrolysis; conditions slightly alkaline / neutral usually (pH 7.5); in duodenum pancreatic juice secreted containing amylase; conditions more alkaline (pH 7.5–8.8); continues hydrolysis of starch / polysaccharides into maltose; wall of the small intestine / duodenum / ileum / jejenum secretes more enzymes; from tips of the microvilli; including maltase which hydrolyses maltose to glucose; [6 max]

(b) (Award [2] each for outline of atherosclerosis -lines 1,2 and 3- and causes of coronary thrombosis -lines 4,5,6,7 and 8.) atherosclerosis – progressive degeneration of artery walls; atheroma / lipids / cholesterol deposited on endothelium / wall; fibrous tissue may also be laid down; blood flow is impeded causing platelets to stick; clotting factors may then be released; a clot or thrombus may form; if in coronary artery / arteriole flow of blood to part of heart muscle is reduced / stopped; myocardial infarction / heart attack / cardiac arrest / heart failure; [4 max]

Option H – Further human physiology