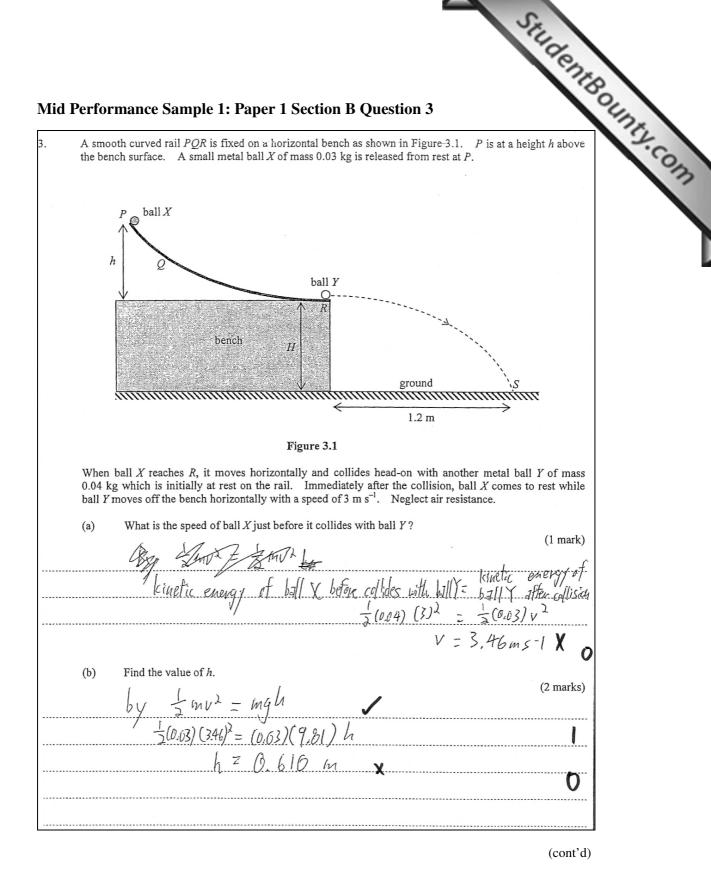


	3.
	THE
	123
	198
cont'd) High Performance Sample 1: Paper 1 Section B Q	uestion 3
*(c) Ball Y lands on the ground at S which is at a horizontal distance of	euestion 3 of 1.2 m from the bench. Find (3 marks)
the height H of the bench.	(3 marks)
time that Bull's reach the ground = 1.2=3	
time that Bull's reach the ground = 1.2 =] = 0.4s	
$S = ut + \frac{1}{2}a + $	
$= 3(0.4) - \frac{1}{2} (10(0.4)^2 \times X)$	
= 0.4 m	0
	0
*(d) Ball X is now released at Q such that ball Y moves off the bench he after collision. Would the time of flight of ball Y change? Expl	
	(2 marks)
No. The vertical motion and horizontal mation of proj	
In this was, the time of flight depends on the ver	thal motion, so
it won't change though there is change in poryortal mo	tion,


(cont'd) High Performance Sample 1: Paper 1 Section B Question 3

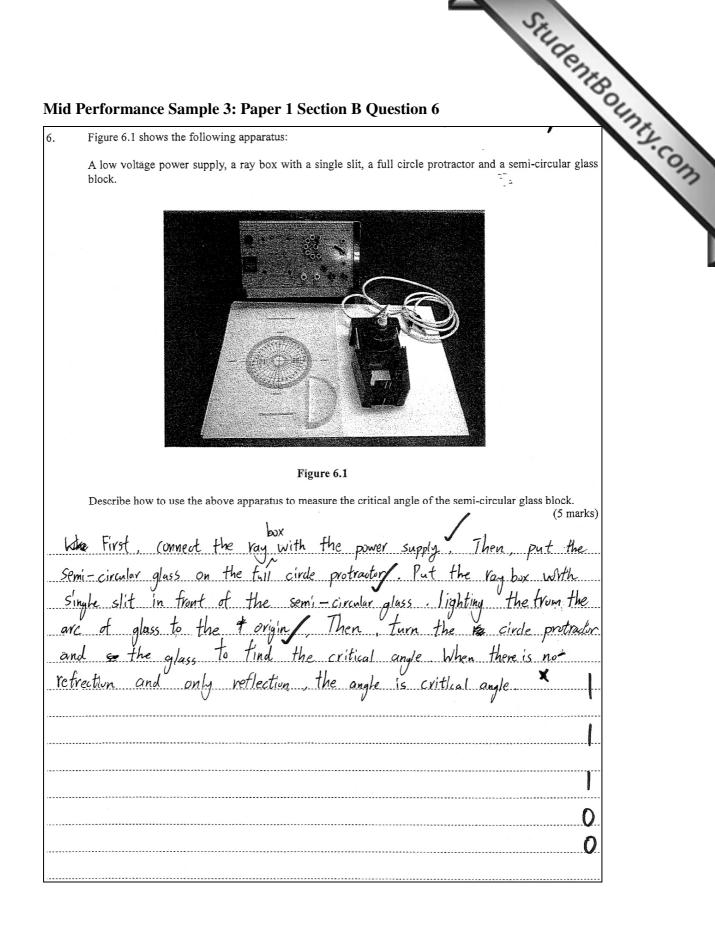
StudentBounty.com **High Performance Sample 2: Paper 1 Section B Question 6** 6. Figure 6.1 shows the following apparatus: A low voltage power supply, a ray box with a single slit, a full circle protractor and a semi-circular glass block. Figure 6.1 Describe how to use the above apparatus to measure the critical angle of the semi-circular glass block. (5 marks) 5-mi-Cirabor First, put the m the -Circle protact g lass block Sine the evactly TS at block กงโ protractor. connect origin the , hen ran DER voltinge porter supph light . Fay ie. cirole origin the ot Cm mal thm ray enter ami glass block Sid of hen pendiculowly. After that trim alass block clockvile The still the on the boution origin protractor. change NOSEN When but termile pay is Straight side of the IP .L. 1- lates Incident any YUM which is From The appular MAN he threen the hornal and the tractident want there on the represents " the critical angle required.

StudentBounty.com High Performance Sample 3: Paper 1 Section B Question 11 The decay of radioactive isotope protactinium-238 (²³⁸ Pa) has a half-life of approximately 136 s. A 11. sample of ²³⁸ Pa is put in front of a GM tube and the initial count rate is 1000 counts per minute. The background count rate is 50 counts per minute. It is known that the decay of 238 Pa does not emit γ radiation. Suggest a simple test to verify the (a) radiation from 238 Pa is β radiation but not α radiation. (3 marks) safer 7 the. does not drop tabe 0 experiment Comparison' should It. Ľ١ Worth done particles that by L might prevent results Estimate the decay constant of ²³⁸ Pa. *(b) (1 mark) = 136 10-3 Ω X Hence, or otherwise, estimate the time taken for the count rate to drop to 250 counts per minute. *(c) (3 marks) -(5.10×103)t In (0.210526)IOXW 306s t 7

1]	Performance Sample 4: Paper 2 Question 2	OLL.
5	tructured question	2
(Performance Sample 4: Paper 2 Question 2 Atructured question a) In studying the photoelectrons emitted from sodium, it was found that no photoelectrons were emitted when the wavelength of the incident light was longer than 5.27 × 10 ⁻⁷ m.	.6
	(i) Explain why the wave model of light cannot account for this phenomenon. (2 marks)	·
	This is because the wave-model propose that the wavekayth is	
	independent from the phytoclectric effect while it isn't. The O	
	madel didn't trat light as discrete enorgy puckets O	
	(ii) Determine the work function for sodium. Express your answer in electron-volts.	
	(ii) Determine the work function for sodium. Express your answer in electron-volts. (3 marks) $\varphi = \frac{3 \times 10^3}{5 \cdot 21 \times 15^{-1}}$	
	$\varphi = \int \frac{3 \times 10^3}{5.21 \times 15^{-1}} $ (3 marks) $\varphi = 3.772 \text{ xiv}^{-17} \text{ J}$	
	$\varphi = \frac{3 \times 10^3}{5 \times 10^{15}}$ (3 marks)	
	$\varphi = \int \frac{3 \times 10^3}{5.21 \times 15^{-1}} $ (3 marks) $\varphi = 3.772 \text{ xiv}^{-17} \text{ J}$	
	$\varphi = \int \frac{3 \times 10^3}{5.21 \times 15^{-1}} $ (3 marks) $\varphi = 3.772 \text{ xiv}^{-17} \text{ J}$	
	$\varphi = \int \frac{3 \times 10^3}{5.21 \times 15^{-1}} $ (3 marks) $\varphi = 3.772 \text{ xiv}^{-17} \text{ J}$	
	$\varphi = \int \frac{3 \times 10^3}{5.21 \times 15^{-1}} $ (3 marks) $\varphi = 3.772 \text{ xiv}^{-17} \text{ J}$	
	$\varphi = \int \frac{3 \times lv^{2}}{527 k l^{2}} \sqrt{3 \text{ marks}}$ $\varphi = \frac{3.772 \text{ marks}}{2.35 \text{ eV}} \frac{1}{1}$ $\frac{1}{2.35 \text{ eV}} \frac{1}{1}$ $(iii) \text{ What is the physical meaning of work function ?} (1 \text{ mark})$	
	$\varphi = \frac{3 \times 10^{2}}{5 \times 10^{16}}$ $\varphi = 3.772 \times 10^{-14} \text{ I}$ $= 2.35 \text{ eV}$ I χ (iii) What is the physical meaning of work function ?	

StudentBounty.com (cont'd) High Performance Sample 4: Paper 2 Question 2 Figure 2.1 shows a photoelectric smoke detector Peter made for a science project competition. It (b) consists of a light source S, a photocell C and an alarm circuit. When smoke enters the detector, light from S is scattered by the smoke particles and enters C as shown in Figure 2.2. Photoelectrons are produced in C when light is incident on its sodium surface. The alarm is triggered when the photoelectric current is larger than 1×10^{-8} A. scattered light beam light beam C to alarm circuit to alarm circuit opening smoke case case Figure 2.2 Figure 2.1 If 5% of the photons incident on the sodium surface of C emit photoelectrons, what is the (i) minimum number of photons incident on the sodium surface of C in 1 s when the alarm is triggered ? (2 marks) $= 1.25 \times 10^{12}$ 1X10-8 Peter claimed that the detector will become more sensitive if a light source of the same type as S (ii) but of higher intensity is used. Comment on his suggestion. (2 marks) white the the time of Current intensity produces more because higher due to more required photons, Thus less smake <u>I</u>Š. number of the same size of current

StudentBounty.com *(c) Ball Y lands on the ground at S which is at a horizontal distance of 1.2 m from the bench. Find the height H of the bench. +D Х n e ζ 5 2 4112 Ø 0 1 Ĩ Ś 0 In Ball X is now released at Q such that ball Y moves off the bench horizontally with a smaller speed after collision. Would the time of flight of ball Y change? Explain briefly. *(d) (2 marks) W 15 10 moves C Sind harizo 10 Fall wil dire Fime the velocity vett 47 50 0 A change.


(cont'd) Mid Performance Sample 1: Paper 1 Section B Question 3

			3	IL de
				ght h above
A smooth curved rail PQR	-		1 Dig at a hai	the show
A smooth curved rail PQR the bench surface. A sma	ll metal ball X of mass 0.0	3 kg is released from rest a	$\frac{P}{P} = \frac{P}{P}$	
	ME	0.03/cg		
$P \otimes \text{ball } X$	p= u=	0.03/cg		
\uparrow				
h Q		-1 		
	Kr V*Ball	45 My = 0,0469		
		3ms i		
	bench H			
		-, ground	15	
	unnnnnnn		nuunnuun ————	2
v2-12=2as.	V=	1.2 m		
	Figure 3.			
When ball X reaches R, it 0.04 kg which is initially a ball Y moves off the bench	t rest on the rail. Imme	diately after the collision,	ball X comes to	Y of mass prest while
(a) What is the speed	of ball X just before it coll	ides with ball Y?		
PI fort =	K. F. gain	V= 12ab		(1 mark)
1. L (00 (=	K. E gain	Ru	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9
		By conservation		
<u>J2910</u> 7	V #9442	$+ m_Y U_Y = M_X X_X +$		
(b) Γ is d the value of I		$O = 0.03 \times V_{\rm c}$	x + 0.04,	⁽³ 0
(b) Find the value of h		0.12 2 0.03 Vx Vx= - 4 ms	' x	(2 marks)
P. 21021 = K.	t gain /			
ypgh = =	yhu?	h = (6)		ş
(() V = V	Zeh	$h = \frac{6}{29}$		
-4-	IZah	= 0.8	m	-

(cont'd)

StudentBounty.com *(c) Ball Y lands on the ground at S which is at a horizontal distance of 1.2 m from the bench. the height H of the bench. Sx = Unt いス= 体3t t = 0.4sl $S_{y} = utt$ Ù $=(3 \times 0.4)$ + 士(10)(1-4) = 2m 0 . It The height I of the bench is 2m Ball X is now released at Q such that ball Y moves off the bench horizontally with a smaller speed after collision. Would the time of flight of ball Y change ? Explain briefly. *(d) (2 marks) ball Y change. A Flight of Spece the equation The ball X gain ght (mgh), and if the beight is redu the. gain by ball & decreases. And hence, change which affect the horizontal distan The come of flight of ball y remain the unchange From the equation, Sx = 4xt, It is only affected by Sx and 4x. As they will Sx change logether with 4x, Hence, E is remain unchange.

(cont'd) Mid Performance Sample 2: Paper 1 Section B Question 3

StudentBounty.com Mid Performance Sample 4: Paper 1 Section B Question 11 The decay of radioactive isotope protactinium-238 (²³⁸ Pa) has a half-life of approximately 136 s. 11. sample of ²³⁸ Pa is put in front of a GM tube and the initial count rate is 1000 counts per minute. The background count rate is 50 counts per minute. It is known that the decay of ²³⁸ Pa does not emit y radiation. Suggest a simple test to verify the (a) radiation from ²³⁸ Pa is β radiation but not α radiation. (3 marks) . . .ist. Estimate the decay constant of ²³⁸ Pa. *(b) (1 mark) $K = 5.10 \times 10^{-3} \text{ s}^{-1}$ (corr. to Na 0 Hence, or otherwise, estimate the time taken for the count rate to drop to 250 counts per minute. *(c) (3 marks) t-C -k(+) 000 0 0 =-Kt In0.25 - 5.10/10 Ś LCOYC. メ

StudentBounty.com The decay of radioactive isotope protactinium-238 (²³⁸ Pa) has a half-life of approximately 136 s. 11. sample of ²³⁸ Pa is put in front of a GM tube and the initial count rate is 1000 counts per minute. The background count rate is 50 counts per minute. It is known that the decay of 238 Pa does not emit γ radiation. Suggest a simple test to verify the (a) radiation from ²³⁸ Pa is β radiation but not α radiation. (3 marks) A Firs ZAG 47UT Paper count 25 the SIMPLE JUC ween ÌF Hig ĪΗ NO METHS The v.T.e is They to count Huge 1-IdiJ minute ĩς Estimate the decay constant of ²³⁸ Pa *(b) (1 mark) constagt decidv *(c) Hence, or otherwise, estimate the time taken for the count rate to drop to 250 counts per minute. (3 marks) Carlo 1710 5' 0 1000 136 ŧ. 250 X 5 0 4 0

Mid Performance Sample 5: Paper 1 Section B Question 11

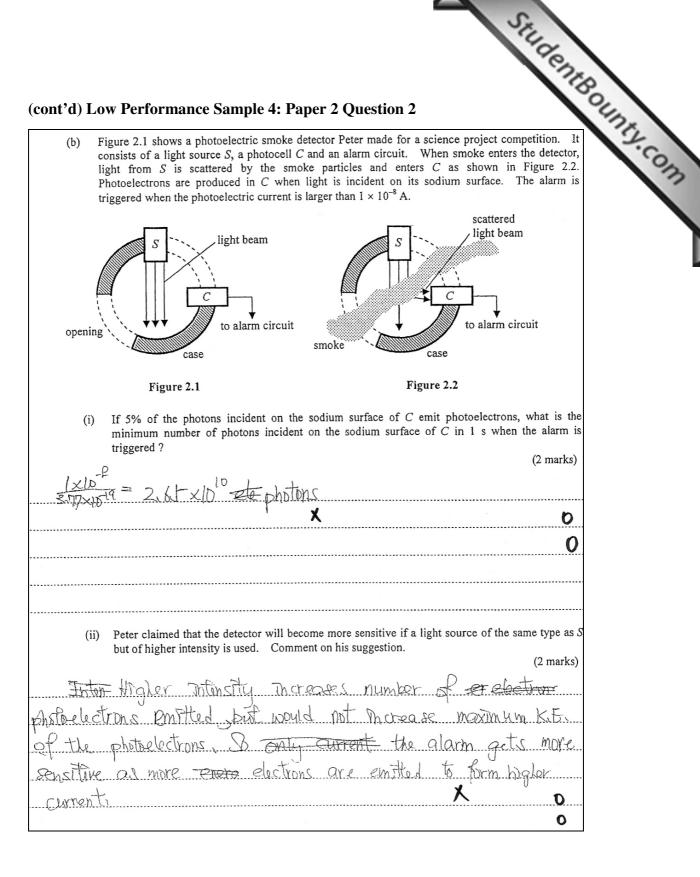
		r 2 Questio	on 4		es.
Structured question			637 6	1.00	
The table below shows th	ie linear attenuat	tion coefficient	, μ , of X-rays for	r different tissu	es.
Tissue Linear attenuation	bone	liver	muscle	lung	air
coefficient/cm ⁻¹	4.00	0.85	0.84	0.20	0.10
of the liver. There	are gases	nside t	he lung.	<i>_</i>	(1 mark)
(b) Show that the ha		~			(2 marks)
Let					
	JAO = AU	e-ur			
	おしっちょう	nAo = InAo	- UT Ine		
	-In 2	= -	ung 🗸	/	
		X= In	i conved)		l.
		.0	1 /		
	f a beam of X-1		/8 of its initial v	value after pas	sing through a lung.
(c) The intensity of	f a beam of X-1	g.			(2 marks)
(c) The intensity of Estimate the thic	f a beam of X-rickness of the lun	g.	$\frac{1}{3} = (\frac{1}{5})^3$		(2 marks)
(c) The intensity of Estimate the thic	f a beam of X-1	g. ç = <u>In2a</u> ç = <u>In2a</u> ($\frac{1}{2} = \left(\frac{1}{2}\right)^2$ $\frac{InL}{6\cdot 2}$ $\chi 3$		(2 marks)
(c) The intensity of Estimate the thic	f a beam of X-rickness of the lun	g. ç = <u>In2a</u> ç = <u>In2a</u> ($\frac{1}{3} = (\frac{1}{5})^3$		(2 marks)
(c) The intensity of Estimate the thic	f a beam of X-rickness of the lun	g. ç = <u>In2a</u> ç = <u>In2a</u> ($\frac{1}{2} = \left(\frac{1}{2}\right)^2$ $\frac{InL}{6\cdot 2} \text{(3)}$		(2 marks)

StudentBounty.com (cont'd) Mid Performance Sample 6: Paper 2 Question 4 Figure 4.1 shows an X-ray radiographic image of a patient's chest. Explain why the bones (d) appear white in colour. Figure 4.1 because there B oppy httle p-ray passe through the bone. The senar can any detect a title Per of those position with bones. Thus, there is 0 D (e) Artificial contrast medium is sometimes used to highlight an organ in X-ray radiographic imaging. Suggest two properties that an artificial contrast medium should have. (2 marks) The halt-life st the predium should not be too 0 . It shold be sound or one day. X long. hours Should les, this inclum be absorbable by the U OKGan-... _____ (f) Suggest one advantage of X-ray radiographic imaging over CT scan. (1 mark) polierts expose in chubonnet in the forcer lesery not later of reven in complications that el END OF PAPER

	s the following app		a full circle protractor	and a semi-circular	glass
block.		Figure 6.1			
Describe how t	o use the above app		ritical angle of the sem	i-circular glass block	narks)
het hight ock Slowly observed	toduce of beam rc totate th	bean pointí perpendiceular « Rull circle ntornal reflec	north south hg at centre to the stre protractor tim. Record I niternal r	the protra direction of of block right site o Diffraction fust	ctor so f. the
		· · · · · · · · · · · · · · · · · · ·			0

Low Performance Sample 2: Paper 1 Section B Question 11

StudentBounty.com +12=13G1 The decay of radioactive isotope protactinium-238 (²³⁸ Pa) has a half-life of approximately 136 s. 11. sample of ²³⁸ Pa is put in front of a GM tube and the initial count rate is 1000 counts per minute. The background count rate is 50 counts per minute. It is known that the decay of 238 Pa does not emit γ radiation. Suggest a simple test to verify the (a) radiation from ²³⁸ Pa is β radiation but not α radiation. (3 marks) changed parallel place with identify active terminals trace one Pa into the Set up vegacive termine Field the 3 radiation can be identified if positive ·i4 identifie it is altracted 0 benged pl eartiv 0 O Estimate the decay constant of ²³⁸ Pa. *(b) (1 mark) #1/2 = 12=5,09.7 lnz 136 Hence, or otherwise, estimate the time taken for the count rate to drop to 250 counts per minute. *(c) (3 marks) 0,26315 () 95 2 261


;	Performance Sample 3: Paper 2 Question 1 Structured question
	 Performance Sample 3: Paper 2 Question 1 Structured question (a) We observe a galaxy X as shown in Figure 1.1. X has negligible velocity relative to the Eart Points A and B are both 10 kpc from the centre. The wavelengths of the H-alpha lines from th hydrogen gas at points A and B are 656.83 nm and 655.73 nm respectively. The wavelength of th H-alpha line measured in the laboratory is 656.28 nm.
	$\begin{array}{c c} \bullet & 10 \text{ kpc} & \bullet & \bullet \\ \hline A & & B \\ \hline B & & edge-on \text{ view of galaxy } X \\ \hline \end{array}$
	(i) Determine the speed of the hydrogen gas at point A along the line of sight of an observer of the Earth. (1 mark) $\frac{V}{C} = \frac{4\lambda}{656.83.65.73}$
	$\frac{3X_{10}}{\sqrt{2}} = \frac{65_{0.5}}{65_{0.5}}$ (ii) Briefly explain at which point, A or B, the hydrogen gas is moving towards the Earth.
	(ii) Directly explained which point, if of B, the hydrogen gas is moving towards the Latin. (2 mark Decause the i of point & B 2s small them the number of point A i So I is a blue shift so it is moving towards the Earth,
	 (iii) Assuming that the hydrogen gas at points A and B are moving in a circular path around the centre of X, and that the mass of X is concentrated at its centre, estimate the mass of X. (2 marks)

(cont'd)

StudentBounty.com (cont'd) Low Performance Sample 3: Paper 2 Question 1 (b) Observations were made on another galaxy Y, as shown in Figure 1.2. С D Ε edge-on view of galaxy Y Figure 1.2 The angular separation between points C and E is 1.6° . Given that Y is 950 kpc from the (i) Earth, express the separation between C and E in kpc. (2 marks) 950 35.8AU 2 22 Z 0 0 3 l, d > w Further observations show that the velocities of hydrogen gas at points D and E along the line (ii) of sight of an observer on the Earth are about the same. What could be inferred about the mass distribution of Y? Assume that the hydrogen gas at points D and E are moving in circular paths around the centre of Y. (1 mark) Briefly explain how we can estimate the surface temperature of a star by analyzing its radiation. (c) (2 marks) 21 ς tem neros 75 (ľ emeral 6 Stari 8) a

StudentBounts.com Low Performance Sample 4: Paper 2 Question 2 Q.2: Structured question In studying the photoelectrons emitted from sodium, it was found that no photoelectrons were (a) emitted when the wavelength of the incident light was longer than 5.27×10^{-7} m. Explain why the wave model of light cannot account for this phenomenon. (i) (2 marks) The Independent of For a wave, energy transferred wallelingth, Frequencis. dependent of Intensity thu Determine the work function for sodium. Express your answer in electron-volts. (ii) (3 marks) What is the physical meaning of work function ? replined (iii) (1 mark) photon line minimum emi. th Q (cont'd)

(cont u)

Low	Performance	Sample 5:	Paper 2	Question 3
-----	-------------	-----------	---------	------------

Q.3: Structured question

StudentBounty.com The heat transfer through a window can be reduced by using double-glazed glass. The table below (a) shows some information of two types of windows, both made from the same type of glass.

		glass air
Туре	Single layer	Double-glazed
Thickness	0.01 m	0.03 m (0.01 m for each layer)
Thermal transmittance U-value	$5.7 \text{ W m}^{-2} \text{ K}^{-1}$	$2.8 \text{ W m}^{-2} \text{ K}^{-1}$
 than that of the single la	ayer window.	e of the double-glazed window is smaller (2 marks) Weat The Conduction
 respectively. (1) If the double-gla	azed window is used in the r	de and inside a room are 36° C and 24° C room and the area of the window is 2 m ² , uction through this window.
 $U = \frac{k}{d}$ $Z = \frac{k}{0.03}$ $k = 0.084 V$	The vat = <u>kACT</u> 1 k ⁻¹ - 0.084	(1 mark) e of heat themster H-TC) d (2) (36-24) - 67,24 0:03
(2) Briefly explain your answer in p	part (1).	(2 marks)
		, transfer will be
 lower than	TWL AINSWER M	part (1) since some

(cont'd)

O 0

www.StudentBounty.com Homework Help & Pastpapers

lose

he

wil

reat

to

SUVIDUNATING

I) Low	 v Performance Sample 5: Paper 2 Question 3 i) Other than using double-glazed windows, suggest one method to reduce through windows. E-(OGTM) 	(1 mark)
	X	
	X	
b) An	n air-conditioner is installed in a room to keep the room cool.	
(i)	Briefly explain how the refrigerant in an air-conditioner absorbs heat from th	
	There will be some fans and computer	(2 marks) SSPNS
	There will be some fans and computer in the air-conditioner.	
	X	0
(ii)) The energy label of the air-conditioner is shown in Figure 3.1.	
	ENERGY LABEL	
	Inc. 362 176 199	
	kessellizert 效益收益 Anad Encry Comparison and Anada An	g)
	Hand a COUNTRAND 1100 ERFORMAND AND RAND (千文) 2.54 Refrigerant 和之所 RAND RAND RAND A	
	Cooling Capacity (W) 82/8 (FX) 2.54 Refigure 82/8 Ref X 2.54 Ref Cooling Capacity (W) 82/8 (FX) 2.54 Ref Cooling Capacity (kW) = 2.54 Cooling Capacity (kW) = 2.54	
	Extension FICU Extension FICU Cooling Capacity (W) NU/B (FX) 2.54 Redingwark BU/M RCDA Room Accounting SMB Cooling capacity (INV) = 2.54	
	Bit of Different Barder P100 Bit of Different Barder P100 Cooling Capacity (MV) NU/8 (FX) 2.54 Refrond Record For Set of	
	Image: constraint with the state of th	air-conditioner in
	for the formation formation for the first of the formation formation for the formation formation for the formation formation formation f	(2 mortes)
	Image: constraint with the state of th	(2 mortes)
		ıg)

						2	
						Stiller Nes.	
							70
7	Performance Sam	ple 6: Pap	er 2 Questi	on 4			
-	Structured question			<u>ll</u> =			
•				cm	1:00		
ſ	The table below shows the						
	Tissue Linear attenuation	bone	liver	muscle	lung	air	
	coefficient/cm ⁻¹	4.00	0.85	0.84	0.20	0.10	
	(a) Suggest one reason of the liver.					(1 m	that nark)
	Because there	are hany	air insi	de the	lung.		
		1					
							1
	(b) Show that the has $\overline{J} = \overline{J}_0 e^{-y}$ $\chi = \frac{y}{y}$					(2 ma	arks)
-	$\chi = \frac{2n}{\eta}$	<u> </u>				0	
	<i></i>					0)
-							
	(c) The intensity of Estimate the thic	kness of the lur	ray drops to 1/ ag.	'8 of its initial v	value after pass	sing through a l (2 ma	
	$\int = \int_0$	e Dr2x					
	8 = C	•					
••••	<u> </u>	,4cm	/				

(cont'd)

(d) Figure 4.1 shows an X-ray radiographic image of a patient's chest. Explain appear white in colour.	why the bones
	why the bones (2 marks)
Figure 4.1 Ba Has X-ray - swart to at the Has	
Because the X-ray cannot penetrate the bone and Direflecting back. Thus, the bone will be white in	L
alor. X	0
(e) Artificial contrast medium is sometimes used to highlight an organ in X-ray radiogn Suggest two properties that an artificial contrast medium should have. Inst, it should be high density which would not the	(2 marks)
e X-ray reflact. *	
ve A-ray reliace.	0
cond, it should be transparant.	0
	0