（2 hours 30 minutes）
This paper must be answered in English

GENERAL INSTRUCTIONS

1．There are TWO sections，A and B ，in this Paper．You are advised to finish Section A in about 60 minutes．

2．Section A consists of multiple－choice questions in this question paper，while Section B contains conventional questions printed separately in Question－Answer Book B．

3．Answers to Section A should be marked on the Multiple－choice Answer Sheet while answers to Section B should be written in the spaces provided in Question－Answer Book B．The Answer Sheet for Section A and the Question－Answer Book for Section B will be collected separately at the end of the examination．

4．The diagrams in this paper are NOT necessarily drawn to scale．
5．The last pages of this question paper contain a list of data，formulae and relationships which you may find useful．

INSTRUCTIONS FOR SECTION A（MULTIPLE－CHOICE QUESTIONS）

1．Read carefully the instructions on the Answer Sheet．After the announcement of the start of the examination，you should first stick a barcode label and insert the information required in the spaces provided．No extra time will be given for sticking on the barcode label after the＇Time is up＇ announcement．

2．When told to open this book，you should check that all the questions are there．Look for the words ＇END OF SECTION A＇after the last question．

3．All questions carry equal marks．
4．ANSWER ALL QUESTIONS．You are advised to use an HB pencil to mark all the answers on the Answer Sheet，so that wrong marks can be completely erased with a clean rubber．You must mark the answers clearly；otherwise you will lose marks if the answers cannot be captured．

5．You should mark only ONE answer for each question．If you mark more than one answer，you will receive NO MARKS for that question．

6．No marks will be deducted for wrong answers．

香港考試及評核局 保留版權
Hong Kong Examinations and Assessment Authority All Rights Reserved 2012

Not to be taken away before the end of the examination session

Section A

1. The graphs below show how the electrical resistances R of three different circuit elements change with temperature θ. Which of the circuit elements can be used to measure temperature ?
(1)

(2)

(3)

A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
2. In the figure below, a training pool B is located next to the main pool A. The training pool B has a smaller area and is shallower. If the pools are under the sunlight at the same time, which of the following statements about the rise in the water temperature of the two pools is correct? Assume that the initial water temperatures of the pools are the same.

A. The water temperature of training pool B rises faster because it is shallower.
B. The water temperature of training pool B rises faster because it has a smaller surface area.
C. The water temperature of main pool A rises faster because it is deeper.
D. The water temperature of main pool A rises faster because it has a larger surface area.
3. Peter adds 50 g of milk at $20^{\circ} \mathrm{C}$ to 350 g of tea at $80^{\circ} \mathrm{C}$, what is the final temperature of the mix

Given: Specific heat capacity of milk $=3800 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ Specific heat capacity of tea $=4200 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
A. $\quad 50.0^{\circ} \mathrm{C}$
B. $\quad 72.5^{\circ} \mathrm{C}$
C. $\quad 73.1^{\circ} \mathrm{C}$
D. $\quad 77.4^{\circ} \mathrm{C}$
4. The sprinkler system on a rooftop is able to spray small water droplets onto the rooftop which can lower the temperature of the rooftop on hot sunny days. Which of the following explanations about the sprinkler system is/are reasonable ?

(1) Water is a good conductor, which conducts heat quickly.
(2) Water has a high specific heat capacity, absorbing a lot of energy when its temperature rises.
(3) Water has a high specific latent heat of vaporization, absorbing a lot of energy when it evaporates.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
*5. A fixed mass of an ideal gas is contained in a cylinder fitted with a frictionless piston as shown in the figure below. If the gas is cooled under constant pressure,

(1) the average separation of the gas molecules will decrease.
(2) the r.m.s. speed of the gas molecules will decrease.
(3) the number of collisions per second of the gas molecules on the piston will decrease.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)
6.

A toy car travelled due east for 10 m in 5 s , then immediately turned north and travelled 5 m for 1 s . What was the average speed of the car ?
A. $\quad 1.9 \mathrm{~m} \mathrm{~s}^{-1}$
B. $\quad 2.2 \mathrm{~m} \mathrm{~s}^{-1}$
C. $\quad 2.5 \mathrm{~m} \mathrm{~s}^{-1}$
D. $\quad 3.5 \mathrm{~m} \mathrm{~s}^{-1}$
7. A stone falls from rest. Neglecting air resistance, the ratio of the distance travelled by the stone in the $1^{\text {st }}$ second to that travelled in the $2^{\text {nd }}$ second is
A. $1: 1$
B. $1: 2$
C. $1: 3$
D. $1: 4$
8.

A block of weight 100 N is placed on a horizontal table and a vertical force of 60 N is exerted on the block as shown in the figure above. Which of the following statements is/are correct?
(1) The weight of the block is balanced by the force exerted on the block by the table.
(2) The weight of the block and the force exerted on the table by the block are equal in magnitude.
(3) The force exerted on the table by the block and the force exerted on the block by the table are an action-reaction pair.
A. (1) only
B. (3) only
C. (1) and (2) only
D. (2) and (3) only

Blocks, P, Q and R, connected by light inextensible threads, are placed on a smooth horizonta shown. A constant force F is applied to P so that the whole system travels to the right with acceler

A lump of plasticine is placed on Q and it moves together with Q. If the applied force F remains unchanged, how would the tensions T_{1} and T_{2} in the two threads change ?

Tension T_{1}

Tension T_{2}

A. increase decrease
B. increase increase
C. decrease decrease
D. decrease increase
10.

Figure (a)

Figure (b)

As shown in Figure (a), a block slides down along a smooth inclined plane from rest. The corresponding speed-time graph of its motion is shown in Figure (b). Which of the following speed-time graphs (in dotted lines) best represents the motion of the block if it is released at a higher position on the plane instead ? Assume that the friction between the ground and the block remains unchanged.
A.

B.

C.

D.

A football player kicks a ball on the ground. The ball leaves the ground with speed v and hits the bar at X with a speed of $17 \mathrm{~m} \mathrm{~s}^{-1}$. X is 2 m above the ground. Neglecting air resistance, what is the value of v ?
A. $\quad 15.8 \mathrm{~m} \mathrm{~s}^{-1}$
B. $\quad 18.1 \mathrm{~m} \mathrm{~s}^{-1}$
C. $\quad 19.0 \mathrm{~m} \mathrm{~s}^{-1}$
D. $\quad 23.3 \mathrm{~m} \mathrm{~s}^{-1}$
12. A rod $X Y$ hinged at X is kept horizontal by a light string. M is the midpoint of $X Y$. In which of the following arrangements will the tension T in the string be the smallest ?
A.

B.

C.

D.

A ball of mass 0.2 kg is released from rest. It hits the ground and rebounds. The velocity-time graph of the ball is shown above. Which of the following statements are correct?
(1) The magnitude of the change in momentum of the ball during the collision is $1.2 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$.
(2) The magnitude of the average force acting on the ball by the ground during the collision is 12 N .
(3) There is mechanical energy loss during the collision.
A. (1) and (2) only
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)
*14. A disc of mass 0.1 kg and velocity $5 \mathrm{~m} \mathrm{~s}^{-1}$ strikes a stationary disc of mass 0.2 kg on a smooth table. After the collision, the 0.1 kg disc moves with a speed of $3 \mathrm{~m} \mathrm{~s}^{-1}$ at 50° to the x direction. Find the component of the velocity of the 0.2 kg disc in y direction, v_{y}, after the collision.

$1.15 \mathrm{~m} \mathrm{~s}^{-1}$
B. $\quad 1.54 \mathrm{~m} \mathrm{~s}^{-1}$
C. $\quad 1.92 \mathrm{~m} \mathrm{~s}^{-1}$
D. $\quad 2.01 \mathrm{~m} \mathrm{~s}^{-1}$
*15.

A man is rotating with constant speed inside a cylindrical 'rotor' and he remains pressed against the wall. The floor of the 'rotor' is smooth. Which of the following forces provides the centripetal force for the man?
A. the weight of the man
B. the frictional force from the wall
C. the normal reaction from the wall
D. the supporting force from the floor
16. Which of the following phenomena demonstrates that light is an electromagnetic wave ?
A. Light carries energy.
B. Light reflects when it meets a polished metal surface.
C. Light bends when it travels across a boundary from one medium into another.
D. Light can travel from the Sun to the Earth.

A longitudinal wave travels to the right through a medium containing a series of particles. The figure above shows the positions of the particles at a certain instant. The dotted lines indicate the equilibrium positions of the particles. Which of the following statements about the wave at the instant shown is/are correct?
(1) The wavelength of the longitudinal wave is 16 cm .
(2) Particles 8 and 10 are moving in the same direction.
(3) Particle 3 is momentarily at rest.
A. (1) only
B. (3) only
C. (1) and (2) only
D. (2) and (3) only
18.

Two pulses, X and Y, are travelling along a string which is fixed at one end to the wall as shown in the figure above. Which of the following is a possible waveform of the string after the two pulses reflect ?
A.

B.

C.

D.

A stationary wave is set up along a string by a vibrator. The waveform at a certain instant is shown above. If the frequency of the vibrator is 50 Hz , what is the wave speed along the string?
A. $\quad 15 \mathrm{~m} \mathrm{~s}^{-1}$
B. $\quad 30 \mathrm{~m} \mathrm{~s}^{-1}$
C. $\quad 45 \mathrm{~m} \mathrm{~s}^{-1}$
D. $\quad 55 \mathrm{~m} \mathrm{~s}^{-1}$
20.

As shown above, a ray of light travels from medium 1 to medium 2, and then enters medium 3. The boundaries are parallel to each other. Arrange the speed of light, c, in the three media in ascending order.
A. $c_{3}<c_{2}<c_{1}$
B. $\quad c_{3}<c_{1}<c_{2}$
C. $\quad c_{2}<c_{3}<c_{1}$
D. $\quad c_{2}<c_{1}<c_{3}$
*21.

Figure (a)

Figure (b)

A student uses the set-up in Figure (a) to study the relationship between the object distance u and the image distance v of a convex lens. A graph of $1 / v$ against $1 / u$ is plotted in Figure (b). If the lens is replaced by another convex lens of shorter focal length, which of the following graphs (in dotted lines) would be obtained ?
A.

B.

C.

D.

*22.

In a Young's double slit experiment, a monochromatic light source of wavelength 600 nm is used. The fringe separation is 5 mm on the screen. If the slit separation is halved and a monochromatic light source of wavelength 450 nm is used instead, what is the new fringe separation?
A. $\quad 1.9 \mathrm{~mm}$
B. $\quad 3.3 \mathrm{~mm}$
C. $\quad 7.5 \mathrm{~mm}$
D. $\quad 13.3 \mathrm{~mm}$
*23. Yellow light of wavelength 590 nm is incident normally on a diffraction grating with 400 lines per mm. Find the difference in angular positions for the third order and the fourth order bright fringes.
A. $\quad 13.7^{\circ}$
B. $\quad 25.7^{\circ}$
C. $\quad 45.1^{\circ}$
D. $\quad 70.7^{\circ}$
24.

Three identical point charges q (represented by dots) are situated in the space as shown. Which of the following descriptions about the direction and magnitude of the electric field E at X and at Y is correct ?

Direction
 Magnitude

A. Same $E_{X}>E_{Y}$
B. Same $E_{\mathrm{X}}<E_{\mathrm{Y}}$
C. Opposite $E_{\mathrm{X}}>E_{\mathrm{Y}}$
D. Opposite $E_{\mathrm{X}}<E_{\mathrm{Y}}$
*25.

The figure above shows four points W, X, Y and Z in a uniform electric field. $W X Z Y$ is a square. The electric potential at W, X and Y are $1 \mathrm{~V}, 5 \mathrm{~V}$ and 5 V respectively. What is the electric potential at Z ?
A. $\quad 1 \mathrm{~V}$
B. $\quad 6 \mathrm{~V}$
C. $\quad 9 \mathrm{~V}$
D. $\quad 11 \mathrm{~V}$
26. Two metal rods, X and Y, of uniform cross-sectional area are made of the same material and have the same volume. The length and resistance of X are l and R respectively. What is the resistance of Y if it has a length of $2 l$?
A. $R / 4$
B. $R / 2$
C. $2 R$
D. $4 R$
27. The figure below shows a battery of e.m.f. 3.0 V and internal resistance 2.0Ω is connected to a light bulb of resistance 10.0Ω. A voltmeter of internal resistance $10 \mathrm{k} \Omega$ is connected in parallel with the light bulb. What is the reading of the voltmeter?

A. $\quad 2.4 \mathrm{~V}$
B. $\quad 2.5 \mathrm{~V}$
C. $\quad 2.9 \mathrm{~V}$
D. $\quad 3.0 \mathrm{~V}$
28. In Figure (a), two identical resistors are connected in series to a cell of e.m.f. V and negligh resistance. The power dissipated by each resistor is P. If the two resistors are now connected in p shown in Figure (b), what is the power dissipated by each resistor?

Figure (a)

Figure (b)
A. $\quad 2 P$
B. $4 P$
C. $8 P$
D. $16 P$
29. In the circuit below, three identical light bulbs are connected to a cell. Under what conditions will light bulb P have the maximum brightness ?

Switch X

Switch Y
A. closed
open
B. closed
closed
C. open
open
D. open
closed

The figure above shows the main parts of an electric iron. In which of the following situations will the fuse blow when the switch is closed ?
A. The heating element is broken and becomes an open circuit.
B. The earth wire is worn out and becomes disconnected.
C. The insulation at contact point X is worn out so that the wire touches the metal case.
D. The insulation at contact point Y is worn out so that the wire touches the metal case.
31. The figure below shows a current of 1.0 A flowing in a metal rod of length 0.5 m . The ro inside a region with a uniform magnetic field of strength 5 mT . What is the direction and the m of the magnetic force acting on the rod ?

Direction

A. into the paper
B. out of the paper
C. into the paper
D. out of the paper

Magnitude
$1.25 \times 10^{-3} \mathrm{~N}$
$1.25 \times 10^{-3} \mathrm{~N}$
$2.17 \times 10^{-3} \mathrm{~N}$
$2.17 \times 10^{-3} \mathrm{~N}$
*32. A Hall probe is placed in a uniform magnetic field. The slice of semiconductor inside the Hall probe is $1.3 \times 10^{-3} \mathrm{~m}$ thick and has 10^{25} charge carriers per cubic metre. When a steady current of 0.4 A passes through the slice, a Hall voltage of $2 \times 10^{-5} \mathrm{~V}$ is set up. What is the magnetic field strength detected by the probe? Assume that the magnitude of the charge of each charge carrier is $1.6 \times 10^{-19} \mathrm{C}$.
A. $\quad 0.104 \mathrm{~T}$
B. $\quad 0.962 \mathrm{~T}$
C. $\quad 1.04 \mathrm{~T}$
D. $\quad 9.62 \mathrm{~T}$
*33.

A square metal frame of side length L is placed inside a uniform magnetic field B as shown. What is the change in magnetic flux through the frame when it is rotated about the axis $X Y$ by 90° and 180° respectively?
$90^{\circ} \quad 180^{\circ}$
A. 00
B. $0 \quad 2 B L^{2}$
C. $B L^{2} \quad 0$
D. $\quad B L^{2} \quad 2 B L^{2}$
34. Which of the following statements about α and β particles is/are correct ?
(1) The mass of an α particle is greater than that of a β particle.
(2) $\quad \alpha$ particles have a stronger penetrating power than β particles.
(3) An α source can discharge a positively charged metal sphere nearby.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
35.

A radioactive source is placed in front of a uniform magnetic field pointing into the paper as shown above. The count rates recorded by the GM tubes at X and Y are 101 counts per minute and 400 counts per minute respectively. Which of the following deductions must be correct ?
A. The source does not emit α radiation.
B. \quad The source emits β radiations.
C. The source emits γ radiations.
D. The background count rate is about 100 counts per minute.
*36. For the following nuclear reaction, state the type of reaction and determine the energy released.

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}
$$

Given: mass of ${ }_{1}^{2} \mathrm{H}=2.014 \mathrm{u}$
mass of ${ }_{1}^{3} \mathrm{H}=3.016 \mathrm{u}$
mass of ${ }_{2}^{4} \mathrm{He}=4.003 \mathrm{u}$
mass of ${ }_{0}^{1} \mathrm{n}=1.009 \mathrm{u}$

Type of reaction

A. fusion	0.018 MeV	
B.	fusion	16.76 MeV
C.	fission	0.018 MeV
D.	fission	16.76 MeV

Energy released

0.018 MeV
16.76 MeV
16.76 MeV

END OF SECTION A

This is a blank page.

This is a blank page.

List of data, formulae and relationships

Data

molar gas constant
Avogadro constant
acceleration due to gravity
universal gravitational constant speed of light in vacuum
charge of electron electron rest mass permittivity of free space permeability of free space atomic mass unit astronomical unit light year parsec
Stefan constant
Planck constant

$$
\begin{aligned}
& R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& g=9.81 \mathrm{~m} \mathrm{~s}^{-2}\left(\mathrm{close}^{2} \text { to the Earth }\right) \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
& \mathrm{u}=1.661 \times 10^{-27} \mathrm{~kg} \\
& \mathrm{AU}=1.50 \times 10^{11} \mathrm{~m} \\
& \mathrm{ly}=9.46 \times 10^{15} \mathrm{~m} \\
& \mathrm{pc}=3.09 \times 10^{16} \mathrm{~m}=3.26 \mathrm{ly}=206265 \mathrm{AU} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~S}^{-4}
\end{aligned}
$$

Rectilinear motion

For uniformly accelerated motion :

$$
\begin{aligned}
v & =u+a t \\
s & =u t+\frac{1}{2} a t^{2} \\
v^{2} & =u^{2}+2 a s
\end{aligned}
$$

Mathematics

$$
\begin{array}{ll}
\text { Equation of a straight line } & y=m x+c \\
\text { Arc length } & =r \theta \\
\text { Surface area of cylinder } & =2 \pi r h+2 \pi r^{2} \\
\text { Volume of cylinder } & =\pi r^{2} h \\
\text { Surface area of sphere } & =4 \pi r^{2} \\
\text { Volume of sphere } & =\frac{4}{3} \pi r^{3}
\end{array}
$$

For small angles, $\sin \theta \approx \tan \theta \approx \theta$ (in radians)

A1. $E=m c \Delta T$

A2. $E=l \Delta m$

A3. $p V=n R T$
A4. $p V=\frac{1}{3} N m \overline{c^{2}}$
A5. $E_{\mathrm{K}}=\frac{3 R T}{2 N_{\mathrm{A}}}$
energy transfer during heating and cooling
energy transfer during change of state
equation of state for an ideal gas
kinetic theory equation
molecular kinetic energy

B1. $F=m \frac{\Delta v}{\Delta t}=\frac{\Delta p}{\Delta t} \quad$ Force
B2. moment $=F \times d$ moment of a force

B3. $E_{\mathrm{P}}=m g h$
B4. $E_{\mathrm{K}}=\frac{1}{2} m v^{2}$
B5. $P=F v=\frac{W}{t}$
mechanical power
B6. $a=\frac{v^{2}}{r}=\omega^{2} r$
centripetal acceleration
B7. $F=\frac{G m_{1} m_{2}}{r^{2}}$
Newton's law of gravitation

C1. $\Delta y=\frac{\lambda D}{a}$
fringe width in double-slit interference

C2. $d \sin \theta=n \lambda$
diffraction grating equation
C3. $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$ equation for a single lens

D1. $F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}$
D2. $\quad E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$
D3. $V=\frac{Q}{4 \pi \varepsilon_{0} r}$
D4. $E=\frac{V}{d}$
D5. $\quad I=n A v Q$
D6. $\quad R=\frac{\rho l}{A}$
D7. $R=R_{1}+R_{2}$
D8. $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
D9. $P=I V=I^{2} R$
D10. $F=B Q v \sin \theta$

D11. $F=B I l \sin \theta$
D12. $V=\frac{B I}{n Q t}$
D13. $B=\frac{\mu_{0} I}{2 \pi r}$
D14. $B=\frac{\mu_{0} N I}{l}$
D15. $\varepsilon=N \frac{\Delta \Phi}{\Delta t}$
D16. $\frac{V_{\mathrm{s}}}{V_{\mathrm{p}}} \approx \frac{N_{\mathrm{s}}}{N_{\mathrm{p}}}$

E1. $N=N_{0} e^{-k t}$
E2. $\quad t_{\frac{1}{2}}=\frac{\ln 2}{k}$
E3. $A=k N$
E4. $\quad E=m c^{2}$

Coulomb's law
electric field strength due to a point charge
electric potential due to a point charge
electric field between parallel plates (numerically)
general current flow equation
resistance and resistivity
resistors in series
resistors in parallel
power in a circuit
force on a moving charge in a magnetic field
force on a current-carrying conductor in a magnetic field

Hall voltage
magnetic field due to a long straight wire
magnetic field inside a long solenoid
induced e.m.f.
ratio of secondary voltage to primary voltage in a transformer
law of radioactive decay
half-life and decay constant
activity and the number of undecayed nuclei
mass-energy relationship

SECTION B：Question－Answer Book B

This paper must be answered in English

INSTRUCTIONS FOR SECTION B

（1）After the announcement of the start of the examination，you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1 ， $3,5,7,9$ and 11.
（2）Refer to the general instructions on the cover of the Question Paper for Section A．
（3）Answer ALL questions．
（4）Write your answers in the spaces provided in this Question－Answer Book．Do not write in the margins． Answers written in the margins will not be marked．
（5）Graph paper and supplementary answer sheets will be provided on request．Write your candidate number，mark the question number box and stick a barcode label on each sheet，and fasten them with string INSIDE this Question－Answer Book．
（6）No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the＇Time is up＇announcement．

①香港考試及評核局 保留版權
Hong Kong Examinations and Assessment Authority All Rights Reserved 2012

Answer ALL questions. Parts marked with "*" involve knowledge of the extension component. answers in the spaces provided.
1.

Figure 1.1

Figure 1.1 shows a solar water heating system. The heater is made from a glass-covered wooden box and the copper pipe inside is painted black. The heater is put on an inclined surface. Oil circulates between the heater and the water storage tank via the copper pipe.
(a) (i) Explain why the copper pipe inside the box is painted black.
(1 mark)
(ii) Explain why the wooden box is covered by a sheet of glass.
(1 mark)
(iii) Explain why the oil circulates in the system in the direction as indicated in Figure 1.1. (2 marks)
\qquad
Answers written in the margins will not be marked.
(b) When the oil flows through the pipe in the heater at a rate of 0.3 kg per minute, the temperature of the oil rises from $25^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$. Determine the power absorbed by the oil.

Given : specific heat capacity of oil $=2500 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$
2.

Figure 2.1

Figure 2.2

A parcel of mass 4 kg is being raised from the ground by a light string connected to a motor at the rooftop of a building as shown in Figure 2.1. The speed-time graph of the parcel for the first 5 s is shown in Figure 2.2. Neglect air resistance.
(a) Find the tension in the string at time $t=1 \mathrm{~s}$.
(c) At $t=5 \mathrm{~s}$, the string suddenly breaks. Describe the subsequent motion of the parcel.

Answers written in the margins will not be marked.

This is a blank page.
3. A smooth curved rail $P Q R$ is fixed on a horizontal bench as shown in Figure 3.1. P is at height the bench surface. A small metal ball X of mass 0.03 kg is released from rest at P.

Figure 3.1
When ball X reaches R, it moves horizontally and collides head-on with another metal ball Y of mass 0.04 kg which is initially at rest on the rail. Immediately after the collision, ball X comes to rest while ball Y moves off the bench horizontally with a speed of $3 \mathrm{~m} \mathrm{~s}^{-1}$. Neglect air resistance.
(a) What is the speed of ball X just before it collides with ball Y ?
(1 mark)
(b) Find the value of h.

Answers written in the margins will not be marked.
*(c) Ball Y lands on the ground at S which is at a horizontal distance of 1.2 m from the bench. Find the height H of the bench.
4. A communications satellite moves in a circular orbit around the Earth with a period of 24 ho remains above a certain place on the equator.
Given : radius of the Earth $r_{\mathrm{E}}=6400 \mathrm{~km}$
*(a) (i) Find the orbital radius of the communications satellite.
*(ii) Determine the orbital speed of the communications satellite.
(b) In Figure 4.1, X is a point in space and O is the centre of the Earth.

Figure 4.1
*(i) A satellite is at X. In Figure 4.1, draw the gravitational force acting on the satellite due to the Earth.
(1 mark)
*(ii) Briefly explain why the satellite cannot move in a circular orbit A as shown in Figure 4.1 under the influence of the Earth's gravitational force only.
(1 mark)
Answers written in the margins will not be marked.

[^0]5. (a) Two rectangular barriers are put into a ripple tank. A vibrator vibrating at 25 Hz p water waves with straight wavefronts. The wavelength of the water waves is 0.8 cm . wavefronts are observed after the water waves pass through the opening between the barriers. Figure 5.1 shows the top view of the set-up.

Figure 5.1
(i) Name the wave phenomenon that takes place when the water waves pass through the opening.
(iii) If the experiment is repeated using a higher vibrator frequency, describe the changes, if any, in the wave pattern shown in Figure 5.1.

[^1](b) Figure 5.2 shows three points, P, Q and R, in a ripple tank such that $P R=8 \mathrm{~cm}$ and $Q R=10 \mathrm{~cm}$. A dipper is put at P to produce circular water waves of wavelength 0.8 cm .

Figure 5.2
Another identical dipper, vibrating in phase with the one at P, is later put at Q. Explain the change, if any, in the amplitude of the water wave at R.
\qquad
\qquad
\qquad

Figure 6.1 shows the following apparatus:
A low voltage power supply, a ray box with a single slit, a full circle protractor and a semi-circular gla block.

Figure 6.1
Describe how to use the above apparatus to measure the critical angle of the semi-circular glass block.

This is a blank page.
7. A drop of liquid is placed on a thin glass slide above a plastic ruler. The side view of the set-up in Figure 7.1. Looking through the liquid drop, a magnified image of the number ' 9 ' on the ruler as shown in Figure 7.2.

Figure 7.1
Figure 7.2
(a) A lens can be used to produce an image with the same nature as that produced by the liquid drop.
(b) The linear magnification of the number ' 9 ' is 1.4 . Take the number ' 9 ' as the object, graph paper below to
(i) draw the image of the object, and
(ii) draw one light ray to find the focal length of the liquid drop.

You may neglect the effect due to the thin glass slide.
(3 marks)

Focal length of the liquid drop $=$ \qquad mm
(c) If the refractive index of the liquid becomes smaller, explain the change, if any, in the focal length of the liquid drop.
(2 marks)

Answers written in the margins will not be marked.
8. As shown in Figure 8.1, two large vertical parallel metal plates, each in a slotted base, are plac polystyrene tile. The plates are connected to the positive and negative terminals of an EHT respectively. The plates' separation $d=10 \mathrm{~cm}$.

Figure 8.1

A small charged ball is suspended by a nylon thread and is placed midway between the plates. The thread makes an angle θ to the vertical when the ball is in equilibrium.
(a) Draw a free-body diagram to show the forces acting on the charged ball. Also indicate in your diagram the direction of the electric field between the plates.
(b) (i) Express $\tan \theta$ in terms of the electric force F acting on the ball and the weight ball.
*(ii) Given that the mass of the ball is 0.07 g . When the voltage between the plates is $4000 \mathrm{~V}, \theta=2^{\circ}$. Estimate the magnitude of the charge carried by the ball. Assume that the electric field between the plates is uniform.
9.

Figure 9.1
(a) A 12 V heater is operated under a steady d.c. voltage of 12 V . The energy consumed by the heater in 2 minutes is measured by a joulemeter as shown in Figure 9.1. The initial and final readings of the joulemeter are 126 J and 2526 J respectively.
(i) Estimate the electrical power of the heater.
(ii) Hence, find the current through the heater.
\qquad
(a) (iii) A 5 A fuse is installed in the power supply. Explain whether the fuse will another identical heater is connected in parallel with the original heater.
*(b) The heater is now connected to a sinusoidal a.c. power supply. The peak value of the voltage of the a.c. power supply is 15 V . How would the output power of the heater change ?
10. Read the following passage about ignition coils and answer the questions that follow.

Ignition coil

An ignition coil is used to produce sparks from the battery of a car to ignite the fuel in the engine. It is used to produce high-voltage pulses from a low-voltage d.c. supply.

An ignition coil consists of two coils of insulated copper wire that are wound around a common iron core. One coil, called the primary coil, is made from relatively few (tens or hundreds) turns of thick copper wire. The other coil, called the secondary coil, typically consists of many (thousands) turns of thin copper wire.

When an electric current is passed through the primary coil, a magnetic field is created. The iron core guides most of the primary coil's magnetic field to the secondary coil. When the current in the primary coil is suddenly interrupted, a high voltage pulse of many thousand volts is developed across the secondary coil. This voltage is often sufficient to cause an electrical discharge to produce a spark.

(a) Explain why a voltage is developed across the secondary coil when the current in the primary coil is suddenly interrupted.

(2 marks)
(b) Suggest two reasons why the voltage developed across the secondary coil is very large.

Answers written in the margins will not be marked.
11. The decay of radioactive isotope protactinium- $238\left({ }^{238} \mathrm{~Pa}\right)$ has a half-life of approximately 130 sample of ${ }^{238} \mathrm{~Pa}$ is put in front of a GM tube and the initial count rate is 1000 counts per minute. background count rate is 50 counts per minute.
(a) It is known that the decay of ${ }^{238} \mathrm{~Pa}$ does not emit γ radiation. Suggest a simple test to verify the radiation from ${ }^{238} \mathrm{~Pa}$ is β radiation but not α radiation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
*(b) Estimate the decay constant of ${ }^{238} \mathrm{~Pa}$. (1 mark)
*(c) Hence, or otherwise, estimate the time taken for the count rate to drop to 250 counts per minute. (3 marks)

END OF PAPER

Sources of materials used in this paper will be acknowledged in the Hong Kong Diploma of Secondary Education Examination Practice Papers published by the Hong Kong Examinations and Assessment Authority at a later stage.

Answers written in the margins will not be marked.

Do not write on this page.

Answers written on this page will not be marked.

Do not write on this page.

Answers written on this page will not be marked.

PP－DSE
PHY
PAPER 2
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION
PRACTICE PAPARER

PHYSICS PAPER 2

Question－Answer Book

（1 hour）
This paper must be answered in English

INSTRUCTIONS

（1）After the announcement of the start of the examination，you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1 ． 3，5，7， 9 and 11.
（2）This paper consists of FOUR sections，Sections A， B，C and D．Each section contains eight multiple－ choice questions and one structured question which carries 10 marks．Attempt ALL questions in any TWO sections．
（3）Write your answers in the spaces provided in this Question－Answer Book．Do not write in the margins． Answers written in the margins will not be marked． For multiple－choice questions，blacken the appropriate circle with an HB pencil．You should mark only ONE answer for each question．If you mark more than one answer，you will receive NO MARKS for that question．
（4）Graph paper and supplementary answer sheets will be provided on request．Write your candidate number，mark the question number box and stick a barcode label on each sheet，and fasten them with string INSIDE this Question－Answer Book．
（5）The diagrams in this paper are NOT necessarily drawn to scale．
（6）The last pages of this Question－Answer Book contain a list of data，formulae and relationships which you may find useful．
（7）No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the＇Time is up＇announcement．
©香港考試及評核局 保留版權
Hong Kong Examinations and Assessment Authority All Rights Reserved 2012

Please stick the ba
here．

Section A : Astronomy and Space Science

Q.1: Multiple-choice questions

1.1 The figure below shows the view facing the south horizon in Hong Kong.

The two arcs represent the tracks of stars. Which of the following statements is/are incorrect ?
(1) The stars move clockwise along the arcs.
(2) The stars move anticlockwise along the arcs.
(3) The time taken for a star to follow path arc 1 is longer than that of path arc 2 .
A. (1) only
A B C
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
1.2 In 1838, German astronomer Bessel announced that the parallax of 61 Cygni is 0.314 arcseconds. What is the distance of 61 Cygni from the Earth according to Bessel's measurement?
A. 0.98 ly
A $\quad \mathrm{B} \quad \mathrm{C} \quad \mathrm{D}$
B. $\quad 1.02 \mathrm{ly}$
C. 3.18 ly
D. $\quad 10.38$ ly
1.3 Which of the following statements about retrograde motion of planets is correct?
A. Retrograde motion can only be observed at locations near the equator.
B. Only planets closer to the Sun than the Earth exhibit retrograde motion.
C. During retrograde motion, an observer on Earth sees the planet move from east to west over the course of several weeks or months.
D. The geocentric model cannot explain the retrograde motion of planets.

Answers written in the margins will not be marked.
1.4 If the acceleration due to gravity on the Moon's surface is $1 / 6$ of that on the Earth's surface, what is the gravitational potential energy with respect to the surface of the Moon for an object of mass m which is 1 m above the Moon's surface ?

Given : $R=$ radius of the Moon ($\gg 1 \mathrm{~m}$)
$M=$ mass of the Moon
$G=$ the universal gravitational constant
$g=$ acceleration due to gravity (close to the Earth)
A. $-m g / 6$
A B C D
B. $m g / 6$
C. $-G M m / R$
D. $G M m / R$

Answers written in the margins will not be marked.
1.5 A satellite of mass m is in a circular orbit of radius r around a planet of mass M and radius R. What is the extra kinetic energy required by the satellite to escape the gravitational attraction of the planet?

Given : $G=$ the universal gravitational constant
A. $\frac{G M m}{2 r}$

B. $\frac{G M m}{r}$
C. $\frac{G M m}{2 R}$
D. $\frac{G M m}{R}$
1.6 American astronomer Hubble discovered that the recession velocities v of galaxies are proportional to their distances d from the Earth, $v=H d$, where H is the Hubble constant. Which of the following is not a unit of the Hubble constant?
A. $\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}$
B. $\mathrm{m} \mathrm{s}^{-1} \mathrm{ly}^{-1}$
C. s
D. s^{-1}

[^2](For questions 1.7 and 1.8) The figure below shows the radiation curves of four stars.

Answers written in the margins will not be marked.
1.7 Which star has the highest surface temperature ?
A. $\operatorname{star} A$
A B
C
D
B. $\operatorname{star} B$
C. $\operatorname{star} C$
D. $\operatorname{star} D$
1.8 Which of the following statements about the stars are correct ?
(1) The area under the curve is proportional to the surface temperature of that star.
(2) The colours of the four stars are different.
(3) If stars C and D have the same luminosity, star D has a larger radius.
$\begin{array}{llcccc}\text { A. (1) and (2) only } & \text { A } & \text { B } & \text { C } & \text { D } \\ \text { B. (1) and (3) only } & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ \text { C. (2) and (3) only } & & & & \\ \text { D. (1), (2) and (3) } & & & & \end{array}$

Answers written in the margins will not be marked.

This is a blank page.

Q.1: Structured question

(a) We observe a galaxy X as shown in Figure 1.1. X has negligible velocity relative to the Ear Points A and B are both 10 kpc from the centre. The wavelengths of the H -alpha lines from the hydrogen gas at points A and B are 656.83 nm and 655.73 nm respectively. The wavelength of the H -alpha line measured in the laboratory is 656.28 nm .

Figure 1.1
(i) Determine the speed of the hydrogen gas at point A along the line of sight of an observer on the Earth.
(ii) Briefly explain at which point, A or B, the hydrogen gas is moving towards the Earth.
(2 marks)
(iii) Assuming that the hydrogen gas at points A and B are moving in a circular path around the centre of X, and that the mass of X is concentrated at its centre, estimate the mass of X.
(2 marks)

Answers written in the margins will not be marked.
(b) Observations were made on another galaxy Y, as shown in Figure 1.2.

Figure 1.2
(i) The angular separation between points C and E is 1.6°. Given that Y is 950 kpc from the Earth, express the separation between C and E in kpc.
(c) Briefly explain how we can estimate the surface temperature of a star by analyzing its radiation.

[^3]
Section B : Atomic World

Q.2: Multiple-choice questions

2.1 Which of the following can be concluded from the Rutherford scattering experiment ?
(1) The nucleus of an atom consists of protons and neutrons.
(2) The nucleus of an atom is very small compared to the size of the atom.
(3) Electromagnetic waves emitted from atoms of gases are of specific frequencies.
A. (2) only
A B C
B. (3) only
C. (1) and (2) only
D. (1) and (3) only
2.2 The ionization energy for a hydrogen atom in ground state is 13.6 eV . A photon of energy 4.53 eV strikes a hydrogen atom in ground state. The hydrogen atom will
A. not be excited to a higher energy level.
B. be excited to the first excited state.
C. be excited to the third excited state.
D. be ionized.
2.3 The wavelength of the radiation emitted when an electron of an atom drops from the $j^{\text {th }}$ excited state of energy E_{j} to a lower $k^{\text {th }}$ excited state of energy E_{k} is
A. $\frac{E_{j}-E_{k}}{h}$

B. $\frac{E_{j}-E_{k}}{h c}$
C. $\frac{h c}{E_{j}-E_{k}}$
D. $\frac{h c}{E_{j}}-\frac{h c}{E_{k}}$
2.4 The de Broglie wavelength of a particle at speed v is λ. If the speed of the particle is doubled, the de Broglie wavelength is
A. $\lambda / 4$
B. $\lambda / 2$
C. λ
D. 2λ

Answers written in the margins will not be marked.
2.5 A beam of electrons is incident on a thin film of crystal. A pattern of bright and dark rings is observed on a fluorescent screen. Which physical phenomenon explains the formation of the pattern?

A. Photoelectric effect
A B C D
B. Electron diffraction
C. Ionization of atoms
D. Lotus effect
2.6 Which of the following statements about different microscopes is/are correct?
(1) The resolution of an optical microscope will increase if red light instead of blue light is used to illuminate the specimen.
(2) A transmission electron microscope (TEM) uses magnetic field to focus the electron beam.
(3) Only specimens that conduct electricity can be studied by a scanning tunnelling microscope (STM).
A. (1) only
A B C D
B. (3) only
C. (1) and (2) only
D. (2) and (3) only
2.7 Estimate the wavelength of electrons when they are accelerated in a transmission electron microscope (TEM) with a voltage of 76 kV .
A. $\quad 2.4 \times 10^{-12} \mathrm{~m}$
A B C D
B. $4.5 \times 10^{-12} \mathrm{~m}$
C. $1.4 \times 10^{-10} \mathrm{~m}$
D. $9.6 \times 10^{-9} \mathrm{~m}$
2.8 Which of the following are possible means by which nano particles could get into the human body?
(1) The skin having direct contact with nano particles.
(2) Inhaling nano particles into the lungs while breathing.
(3) Ingesting food containing nano particles.
A. (1) and (2) only
A B C D
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)

Answers written in the margins will not be marked.

Q.2: Structured question

(a) In studying the photoelectrons emitted from sodium, it was found that no photoelectrons wet emitted when the wavelength of the incident light was longer than $5.27 \times 10^{-7} \mathrm{~m}$.
(i) Explain why the wave model of light cannot account for this phenomenon.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Determine the work function for sodium. Express your answer in electron-volts.
(b) Figure 2.1 shows a photoelectric smoke detector Peter made for a science project competition. It consists of a light source S, a photocell C and an alarm circuit. When smoke enters the detector, light from S is scattered by the smoke particles and enters C as shown in Figure 2.2. Photoelectrons are produced in C when light is incident on its sodium surface. The alarm is triggered when the photoelectric current is larger than $1 \times 10^{-8} \mathrm{~A}$.

Figure 2.1

Figure 2.2
(i) If 5% of the photons incident on the sodium surface of C emit photoelectrons, what is the minimum number of photons incident on the sodium surface of C in 1 s when the alarm is triggered ?
(2 marks)
(ii) Peter claimed that the detector will become more sensitive if a light source of the same type as S but of higher intensity is used. Comment on his suggestion.
(2 marks)

Answers written in the margins will not be marked.

Section C : Energy and Use of Energy

Q.3: Multiple-choice questions

3.1 A 100 W filament light bulb and a 22 W compact fluorescent lamp both produce a luminous flux of 1600 lm . Which of the following statements about the two light sources is/are correct?
(1) Both light sources give out the same amount of energy in the form of electromagnetic waves in 1 s .
(2) 78 J of electrical energy is converted to heat in the filament light bulb in 1 s .
(3) Both light sources have the same brightness to the human eye when observed from the same distance.
A. (1) only
A B
C
C D
B. (3) only
C. (1) and (2) only
D. (2) and (3) only
3.2 A point light source with luminous flux F is illuminating a point P on a table surface as shown in the figure below. The illuminance at point P is

A. $\frac{F \cos \theta}{4 \pi r^{2}}$
B. $\frac{F \cos ^{2} \theta}{4 \pi r^{2}}$
C. $\frac{F \cos \left(90^{\circ}-\theta\right)}{4 \pi r^{2}}$
D. $\frac{F \cos ^{2}\left(90^{\circ}-\theta\right)}{4 \pi r^{2}}$
3.3 Which of the following statements about an electric hotplate and an induction cooker is/are correct?
(1) Both cookers make use of the heating effect of a current.
(2) Only metal cooking pots can be used for both cookers.
(3) In general, an induction cooker has a higher energy efficiency than an electric hotplate.
A. (1) only
A B
C D
B. (2) only
C. (1) and (3) only
D. (2) and (3) only

Answers written in the margins will not be marked.
3.4 The table below shows the data of a house. Calculate the Overall Thermal Transfer Value of the h

	Windows	Walls	Roof
Rate of heat transfer $/ \mathbf{W}$	6200	4400	8600
Total area $/ \mathbf{m}^{\mathbf{2}}$	20	480	140

A. $\quad 30 \mathrm{~W} \mathrm{~m}^{-2}$
A B C D
B. $\quad 127 \mathrm{~W} \mathrm{~m}^{-2}$
C. $\quad 310 \mathrm{~W} \mathrm{~m}^{-2}$
D. $\quad 381 \mathrm{~W} \mathrm{~m}^{-2}$
3.5 A wind turbine has an overall efficiency of 30% and its output power is 360 kW when the wind blows normally at the turbine with a constant velocity of $10 \mathrm{~m} \mathrm{~s}^{-1}$. Find the length of the blades of the wind turbine.
Given: density of air $=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$
A. $\quad 4.1 \mathrm{~m}$
A B
B
C $\quad \mathrm{D}$
B. $\quad 7.6 \mathrm{~m}$
C. $\quad 13.8 \mathrm{~m}$
D. 25.2 m
3.6 The difference in mass between a uranium-238 nucleus and its constituent nucleons is 1.88482 u . Determine the binding energy per nucleon of a uranium-238 nucleus.
A. $\quad 2.08 \mathrm{MeV}$
A B C D
B. $\quad 7.37 \mathrm{MeV}$
C. $\quad 448.59 \mathrm{MeV}$
D. $\quad 1754.77 \mathrm{MeV}$
3.7 Which of the following is the function of the control rods in a fission reactor?
A. They slow down neutrons.
A B
C D
B. They absorb neutrons.
C. They absorb heat from the reactor.
D. They transfer heat to the generator.
3.8 Estimate the electrical power output of a $20 \mathrm{~m}^{2}$ solar panel when it is illuminated with sunlight of intensity $1 \mathrm{~kW} \mathrm{~m}^{-2}$ at an angle of 30° to the vertical.

Given: efficiency of the solar panel $=12 \%$
A. $\quad 1200 \mathrm{~W}$
A B
C D
B. 1386 W
C. 2078 W
D. 2400 W

Answers written in the margins will not be marked.

Q.3: Structured question

(a) The heat transfer through a window can be reduced by using double-glazed glass. The table belo shows some information of two types of windows, both made from the same type of glass.

			air
Type	Single layer	Double-glazed	
Thickness	0.01 m	0.03 m (0.01 m for	layer)
Thermal transmittance U-value	$5.7 \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}$	$2.8 \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-1}$	

(i) Suggest two reasons why the thermal transmittance of the double-glazed window is smaller than that of the single layer window.
(2) Briefly explain whether the actual rate of heat transfer will be higher or lower than your answer in part (1).
\qquad
\qquad
\qquad
\qquad

[^4]

Figure 3.1
Estimate the amount of heat that can be removed from the room by the air-conditioner in 5 minutes.

[^5]
Section D : Medical Physics

Q.4: Multiple-choice questions

4.1 The far point of Phoebe's eye is at 60 cm and its lens-to-retina distance is 2.5 cm . What is the power of the corrective lens that she should wear?
A. -2.0 D
A B
C
D
B. -1.7 D
C. $\quad 1.7 \mathrm{D}$
D. 2.0 D
4.2 Which of the following features of the middle ear amplify the pressure ?
(1) The middle ear is filled with air.
(2) The ear bones form a lever system.
(3) The area of the ear drum is larger than that of the oval window.
A. (1) and (2) only
A B
C
D
B. (1) and (3) only
C. (2) and (3) only
D. (1), (2) and (3)
4.3 The sound intensity of a machine is $0.01 \mathrm{~W} \mathrm{~m}^{-2}$. By adding a noise barrier, the sound intensity is reduced to $6 \times 10^{-6} \mathrm{~W} \mathrm{~m}^{-2}$. Find the reduction in the sound intensity level. Given : threshold of hearing $=1 \times 10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$
A. 32 dB

A B

C. 88 dB
D. 100 dB
(For questions 4.4 and 4.5) The following table shows the acoustic impedances and the densities of three different media X, Y and Z.

Medium	Acoustic impedance $/ \times \mathbf{1 0}^{\mathbf{6}}$ Rayl	Density $/ \mathbf{k g ~ m} \mathbf{~ m ~}^{\mathbf{3}}$
X	1.48	1000
Y	1.63	1058
Z	1.66	1060

4.4 Arrange the speed of sound in the three media, v_{X}, v_{Y} and v_{Z}, in descending order.
A. $v_{X}>v_{Y}>v_{Z}$
A B
C D
B. $v_{Y}>v_{X}>v_{Z}$
C. $v_{Z}>v_{X}>v_{Y}$
D. $v_{Z}>v_{Y}>v_{X}$
4.5 What is the intensity reflection coefficient between medium X and medium Z for normal incidence ?
A. $\quad 7.97 \times 10^{-4}$
A
B
C $\quad \mathrm{D}$
B. $\quad 8.48 \times 10^{-4}$
C. $\quad 3.29 \times 10^{-3}$
D. 5.73×10^{-2}

Answers written in the margins will not be marked.
4.6 Which of the following statements about a fibre optic endoscope is incorrect ?
A. Tissue samples can be obtained at the same time for further examination.
B. Coherent bundle fibres are used for image transport.
C. The cladding of the optical fibre must have a smaller refractive index than the glass fibre inside.
D. The critical angle of the optical fibre should be as large as possible.

4.7 Which of the following statements about radionuclide planar imaging is/are incorrect ?
(1) Radionuclide planar images provide functional information about the organ.
(2) Radiation of radionuclide planar imaging stays shorter inside our body than that of X-ray radiographic imaging.
(3) Tracers are used to absorb radiation.
A. (1) only
B. (2) only
C. (1) and (3) only
D. (2) and (3) only
4.8 Technetium- 99 m has a half-life of 6 hours, and a biological half-life of 3 hours. A patient is given an injection of technetium- 99 m at 12:00 noon. Which of the following statements is/are correct ?
(1) At 3:00 pm, the number of undecayed technetium nuclei in the patient's body is less than half of the initial value.
(2) All the technetium nuclei will be removed from the body by biological processes by 6:00 pm .
(3) All the technetium nuclei removed from the body by biological processes are decayed.
$\begin{array}{llcccc}\text { A. (1) only } & \text { A } & \text { B } & \text { C } & \text { D } \\ \text { B. (2) only } & \bigcirc & \bigcirc & \bigcirc & \bigcirc \\ \text { C. (1) and (3) only } & & & & \\ \text { D. (2) and (3) only } & & & & \end{array}$

Answers written in the margins will not be marked.

Q.4: Structured question

The table below shows the linear attenuation coefficient, μ, of X-rays for different tissues.

Tissue	bone	liver	muscle	lung	air
Linear attenuation coefficient/cm					

(a) Suggest one reason to explain why the linear attenuation coefficient of the lung is smaller than that of the liver.
(1 mark)
(b) Show that the half-value thickness $=\frac{\ln 2}{\mu}$.

(2 marks)

Answers written in the margins will not be marked.
(d) Figure 4.1 shows an X-ray radiographic image of a patient's chest. Explain why appear white in colour.

Figure 4.1

\qquad
\qquad
(f) Suggest one advantage of X-ray radiographic imaging over CT scan.

\qquad

END OF PAPER

Sources of materials used in this paper will be acknowledged in the Hong Kong Diploma of Secondary Education Examination Practice Papers published by the Hong Kong Examinations and Assessment Authority at a later stage.

Answers written in the margins will not be marked.

Do not write on this page.

Answers written on this page will not be marked.

Do not write on this page.

 Answers written on this page will not be marked.
Do not write on this page. Answers written on this page will not be marked.

List of data, formulae and relationships

Data

molar gas constant
Avogadro constant
acceleration due to gravity
universal gravitational constant speed of light in vacuum
charge of electron electron rest mass permittivity of free space permeability of free space atomic mass unit astronomical unit light year parsec
Stefan constant
Planck constant

$$
\begin{aligned}
& R=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& N_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1} \\
& g=9.81 \mathrm{~m} \mathrm{~s}^{-2}\left(\mathrm{close}^{2} \text { to the Earth }\right) \\
& G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \\
& c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& e=1.60 \times 10^{-19} \mathrm{C} \\
& m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
& \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
& \mathrm{u}=1.661 \times 10^{-27} \mathrm{~kg} \\
& \mathrm{AU}=1.50 \times 10^{11} \mathrm{~m} \\
& \mathrm{ly}=9.46 \times 10^{15} \mathrm{~m} \\
& \mathrm{pc}=3.09 \times 10^{16} \mathrm{~m}=3.26 \mathrm{ly}=206265 \mathrm{AU} \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~S}^{-4}
\end{aligned}
$$

Rectilinear motion

For uniformly accelerated motion :

$$
\begin{aligned}
v & =u+a t \\
s & =u t+\frac{1}{2} a t^{2} \\
v^{2} & =u^{2}+2 a s
\end{aligned}
$$

Mathematics

$$
\begin{array}{ll}
\text { Equation of a straight line } & y=m x+c \\
\text { Arc length } & =r \theta \\
\text { Surface area of cylinder } & =2 \pi r h+2 \pi r^{2} \\
\text { Volume of cylinder } & =\pi r^{2} h \\
\text { Surface area of sphere } & =4 \pi r^{2} \\
\text { Volume of sphere } & =\frac{4}{3} \pi r^{3}
\end{array}
$$

Astronomy and Space Science		Energy and Use of Energy
$U=-\frac{G M m}{r}$	gravitational potential energy	$\frac{Q}{t}=k \frac{A\left(T_{\mathrm{H}}-T_{\mathrm{C}}\right)}{d} \quad$ rate of energy transfer by conduction
$P=\sigma A T^{4}$	Stefan's law	$U=\frac{k}{d}$ thermal transmittance U -value
$\left\|\frac{\Delta f}{f_{0}}\right\| \approx \frac{v}{c} \approx\left\|\frac{\Delta \lambda}{\lambda_{0}}\right\|$	Doppler effect	$P=\frac{1}{2} \rho A v^{3} \quad \text { maximum power by wind turbine }$
Atomic World		Medical Physics
$\frac{1}{2} m_{\mathrm{e}} v_{\max }^{2}=h f-\phi$	Einstein's photoelectric equation	$\theta \approx \frac{1.22 \lambda}{d} \quad$ Rayleigh criterion (resolving power)
$E_{\mathrm{n}}=-\frac{1}{n^{2}}\left\{\frac{m_{\mathrm{e}} e^{4}}{8 h^{2} \varepsilon_{0}^{2}}\right\}=-\frac{13.6}{n^{2}} \mathrm{eV}$		power of a lens
	energy level equation for hydrogen atom	$L=10 \log \frac{I}{I_{0}} \quad$ intensity level (dB)
$\begin{aligned} & \lambda=\frac{h}{p}=\frac{h}{m v} \\ & \theta \approx \frac{1.22 \lambda}{1} \end{aligned}$	de Broglie formula	$Z=\rho c \quad \text { acoustic impedance }$
	Rayleigh criterion (resolving power)	$\alpha=\frac{I_{\mathrm{r}}}{I_{0}}=\frac{\left(Z_{2}-Z_{1}\right)^{2}}{\left(Z_{2}+Z_{1}\right)^{2}}$ intensity reflection coefficient
d		$I=I_{0} \mathrm{e}^{-\mu x} \quad \text { transmitted intensity through a medium }$

A1. $E=m c \Delta T$

A2. $E=l \Delta m$

A3. $p V=n R T$
A4. $p V=\frac{1}{3} N m \overline{c^{2}}$
A5. $\quad E_{\mathrm{K}}=\frac{3 R T}{2 N_{\mathrm{A}}}$

B1. $F=m \frac{\Delta v}{\Delta t}=\frac{\Delta p}{\Delta t} \quad$ Force
B2. \quad moment $=F \times d$ moment of a force

B3. $E_{\mathrm{P}}=m g h$
B4. $E_{\mathrm{K}}=\frac{1}{2} m v^{2}$
kinetic energy
B5. $\quad P=F v=\frac{W}{t}$
mechanical power
B6. $\quad a=\frac{v^{2}}{r}=\omega^{2} r$
centripetal acceleration
B7. $F=\frac{G m_{1} m_{2}}{r^{2}}$
Newton's law of gravitation

C1. $\Delta y=\frac{\lambda D}{a}$
fringe width in double-slit interference

C2. $d \sin \theta=n \lambda$
diffraction grating equation
C3. $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
energy transfer during heating and cooling
energy transfer during change of state
equation of state for an ideal gas
kinetic theory equation
molecular kinetic energy
gravitational potential energy

B4. $\quad \begin{array}{r}E_{\mathrm{K}}=\frac{1}{2} m v^{2} \\ W\end{array}$解 equation for a single lens

D1. $F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}$
D2. $\quad E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$
D3. $\quad V=\frac{Q}{4 \pi \varepsilon_{0} r}$
D4. $E=\frac{V}{d}$
D5. $\quad I=n A v Q$
D6. $\quad R=\frac{\rho l}{A}$
D7. $R=R_{1}+R_{2}$
D8. $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
D9. $P=I V=I^{2} R$
D10. $F=B Q v \sin \theta$

D11. $F=B I l \sin \theta$
D12. $V=\frac{B I}{n Q t}$
D13. $B=\frac{\mu_{0} I}{2 \pi r}$
D14. $B=\frac{\mu_{0} N I}{l}$
D15. $\varepsilon=N \frac{\Delta \Phi}{\Delta t}$
D16. $\frac{V_{\mathrm{s}}}{V_{\mathrm{p}}} \approx \frac{N_{\mathrm{s}}}{N_{\mathrm{p}}}$

E1. $N=N_{0} e^{-k t}$
E2. $\quad t_{\frac{1}{2}}=\frac{\ln 2}{k}$
E3. $A=k N$
E4. $\quad E=m c^{2}$

Coulomb's law
electric field strength due to a point charge
electric potential due to a point charge
electric field between parallel plates (numerically)
general current flow equation
resistance and resistivity
resistors in series
resistors in parallel
power in a circuit
force on a moving charge in a magnetic field
force on a current-carrying conductor in a magnetic field

Hall voltage
magnetic field due to a long straight wire
magnetic field inside a long solenoid
induced e.m.f.
ratio of secondary voltage to primary voltage in a transformer
law of radioactive decay
half-life and decay constant
activity and the number of undecayed nuclei
mass-energy relationship

鳴謝
 Acknowledgements

本專輯的試題曾引用下列刊物的資料：
Material from the following publications has been used in question papers in this volume：

Leisure and Cultural Services http：／／www．lcsd．gov．hk／beach／b5／swim－address－s．php\＃pao Department，The Government of HKSAR

Electrical and Mechanical http：／／www．energyland．emsd．gov．hk／en／appAndEquip／appli Services Department，The ances／meels．html Government of HKSAR
University of Szeged，Hungary http：／／www．szote．u－szeged．hu／radio／potlap1／amel2＿9c．htm

專輯內試題引用的資料，蒙有關出版社／機構准予使用，本局深表感銘。倘當中引用的資料有未及取得版權持有者同意，或因未悉其來源而有牴觸版權之處，祈爲鑒諒。

本局已盡一切努力追溯資料的來源，如有因資料來源錯漏而導致牴觸版權的情況，懇請有關的版權持有者聯絡本局，以便作出適當的安排。

The Authority is grateful to publishers／organisations for permission to include in the question papers material from their publications．We apologise for any infringement of copyright in respect of material printed in this volume，for which permission has not been obtained in time or for which the sources could not be traced．

Every effort has been made to trace copyright．However，in the event of any inadvertent infringement due to errors or omissions，copyright owners are invited to contact us so that we can come to a suitable arrangement．

[^0]: Answers written in the margins will not be marked.

[^1]: Answers written in the margins will not be marked.

[^2]: Answers written in the margins will not be marked.

[^3]: Answers written in the margins will not be marked.

[^4]: Answers written in the margins will not be marked.

[^5]: Answers written in the margins will not be marked.

